Thin inclusions in elastic bodies with possible delaminations

Thin inclusions in elastic bodies with possible
delaminations

Alexander Khludnev

Lavrentiev Institute of Hydrodynamics, Novosibirsk
E-mail: khlud@hydro.nsc.ru



Thin inclusions in elastic bodies with possible delaminations

Crack in elastic body
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Problem formulation
Find u = (ug,u2), o0 = {ojj},i,j = 1, 2, such that
—dive=f in Q,, (
o =Ae(u) in Q,, (
u=0 on T, (3
[uly >0, [6,]=0, [ulv:-0,=0 on ~, (
(

0, <0,0=0 on 'Yia
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where [u]l =ut —u~, o, = o1, or =0V —o, -V
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Directions of investigation

1. Solvability of boundary value problems, solution
smoothness

2. Dependence on parameters, shape sensitivity analysis,
differentiability of energy functionals, invariant integrals
3. Optimal control problems

4. Smooth domain method. Fictitious domain method
5. Contact of elastic bodies of different dimensions

6. Overlapping domain problems

7. Rigid inclusions in elastic bodies
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Thin rigid inclusions (unti-cracks)

T

R(Y) = {p = (p1,02) | p(x) = b(—x2,x1) + (¢}, %), x € 7}

Khludnev, Leugering (2010, 1012); Itou, Khludnev, Rudoy,
Tani(2012)
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Find u = (u1,u2), po € R(v), o = {0ij},i,j = 1,2, such that

—dive =f in Q,, (6)

oc—Ag(u)=0 in Q,, (7)

u=0 on T, (8)

[uly >0,u” =pg, of <0, 05 =0 on ~, (9)
of [ulv=0 on ~, (10)

)

/[O'I/]p =0 VpeR(®). (11



Thin inclusions in elastic bodies with possible delaminations

Thin rigid inclusions in plates
Khludnev (2012)
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Notations Spaces of infinitesimal rigid displacements

L(v) = {I [ I(x) = a0 + a1x1 + azx2,

aj=const, i =0,1,2; x = (x1,x2) € v},

R(7) = {p = (p1,p2) | p(x) = b(—x2,x1) + (c', ¢?), x € 7}
Set of admissible displacements

K={(v,p) € H|[v]ly > [[p.]| on ~; (12)
(v, @)y~ € R(7) x L(7)}-
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Find functions u = (u1,u2),w, po € R(v),lo € L(7v),
o = {ojj},m = {m;j},i,j = 1, 2, such that

—dive =F, —=VVm=f in Q,, (13)
oc—Aeg(u) =0, m+DVVw=0 in Q,, (14)
u=w=w,=0 on I, (15)

[ulv > [[w.]] on v, (16)

u=pg, w=1lp on v, (17)

/[0'1/ u] + /[t w] — /[m,,wl,] =0, (18)

~

/ [ov vl + / [tV¢] — / M0l >0 V(v 9) €K. (19)
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Thin elastic inclusion without delamination
Find u = (ug,u2), o = {ojj},i,j = 1,2, w, such that
—dive=f in Q,,
oc—Aeg(u)=0 in Q
Wiox — 8 = [ou] on 7,
u=0 on T,
Wyx = Wyxx =0 for x=10,1,

w=u,, [6:]=0 on ~.
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Thin elastic inclusion with delamination
Khludnev, Negri (2012)
Find u = (ug, u2), o = {ojj},i,j = 1,2, w, such that

—divo=f in Q
oc—Ae(u)=0 in Q

s (26)
s (27)
Woox — 8 = [0w] on 7, (28)

u=0 on T, (29)

Wyy = Wyxx =0 for x=0,1, (30)

[u] >0, w=u, on =, (31)

ol <0, +[u,,]—00' =0 HnHa ~. (32)
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K = {(u,w) € H{(2,)* x H*(7) | [u] >0, w =u; on~},
Variational inequality

(u,w) € K, /U(u)s(ﬁ —u)— /f(ﬁ —u)+ (33)

Q, Q,

+ [ Wi — w) — [ —w) 20 V@) ek
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Convergence of parameter to infinity
Find u® = (u‘ls, Ug), o = {O'i‘}},i,j = 1,2, w9, such that
. 5 _ .
—dive®=f in Q,,
o’ —Ae(’) =0 in Q.

owl  —g=1[0] on ~, 36
wfx = fox =0 for x=0,1, 38

[W]1>0, w=ul" on ~,

v

(34)
(35)
(36)
=0 on T, (37)
(38)
(39)
(40)

0'3+ <0, o-ﬁ"'[u,‘i] =0, o-f_:t =0 Ha 7.
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Limit problem

Ry(7) = {I(x) | (x) = co + c1x, x € [0, 1]},
Ke = {(u,1) € HH,)* X Re(7) | [w] > 0, 1= u on ).

(u,l0) € Ki, /U(u)s(ﬁ —u)— /f(ﬁ —u)— (41

Q, Q,

_/ga—uo) >0 V(@) €K,
Y
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Differential formulation |

Find u = (ug,u2), o = {oj},i,j = 1,2, lp € Rs(7), such that

—dive=f in Q,,

oc—Ae(u)=0 in Q.

u=0 in T,

lo=u, in 7,

[u,] > 0, af =0,0!<0,0f[u,]=0 on =,

_/[O-V]|=/g| vl € Ry(7).

~

42
43
44

(42)
(43)
(44)
(45)
(46)
(47)
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Differential formulation Il

Find u = (ug, u2), o = {oij},i,j = 1,2, lg € Rs(7), such that

—dive=f in Q,,
oc—Ac(u)=0 in Q,,
u=0 on T,

[u] >0, 1lp=u, on =,

~ [lov-ul= [ g,

_/[U,,.a]z/g v(@,1) € K.

~

(48)
(49)
(50)
(51)
(52)

52

(53)
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Convergence of parameter to zero
Find u® = (u‘ls, Ug), o = {O'i‘}},i,j = 1,2, w9, such that

—dive? =f in Q,, (54)

o’ —Ac(u’) =0 in Q. (55)

owl  =1[c’] on =, (56)

wW=0 on T, (57)

wl =wl =0 for x=0,1, (58)

W] >0, w®=ul~ on =, (59)

Ug"' <o, o’ﬁ"'[ui] =0, a’f_i =0 on ~. (60)
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Limit problem
Find u = (ug,u2), o0 = {aijj},i,j = 1, 2, such that

—dive=f in Q,,

oc—Acg(u)=0 in Q,,

u=0 on T,

[u,] > 0, U;t <0, [o.] =0, Uf =0, o,Ju,] =0o0n~.

—_——
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Vertical and tangential displacements of inclusion
Khludnev, Leugering (2013)

Find u = (u1,u2), o0 = {ojj},i,j = 1,2, v, w, such that

—dive=f in Q,,

oc—Aeg(u)=0 in Q,,

01Wxxxx = [ow] on 7,

—0vyx = [o7] on ~,

u=0 wa T,

Wiy = Wyyx =V =0 for x=0,1,

[w] >0, w=u,,v=u_, of[u,]=0 on =,

ajSO,aj:O on ~.
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Find u = (u1,u2), o = {oj},i,j = 1,2, and
lo € Rs(7), 90 € R such that

—dive=f in Q,, (61)

oc—Aeg(u)=0 in Q,, (62)

u=0 on T, (63)

[u]>0,lg=u;, gqg=u_ on =, (64)
of=0,0 <0, of[u,]=0 on ~, (65)
(66)

R

oT =0, /[a',,]l =0 VI € Ry(7)

Rs(7) = {I(x) | I(x) = co + c1x, x € (0,1)}



