Weighted Korn Inequalities for General External Cusps

Gabriel Acosta and Ignacio Ojea

IMAS CONICET, Depto. de Matemática - Universidad de Buenos Aires

October 26, 2013
$\Omega \subset \mathbb{R}^n$, $u \in W^{1,p}(\Omega)^n$, $1 < p < \infty$

Korn’s Inequality:

$$\|Du\|_{L^p(\Omega)^n} \leq C\left\{\|u\|_{L^p(\Omega)^n} + \|\varepsilon(u)\|_{L^p(\Omega)}\right\}.$$
Let $\Omega \subset \mathbb{R}^n$, $u \in W^{1,p}(\Omega)^n$, $1 < p < \infty$.

General Korn's Inequality:

$$\|Du\|_{L^p(\Omega)^n} \leq C\left\{\|u\|_{L^p(\Omega)^n} + \|\varepsilon(u)\|_{L^p(\Omega)}\right\}.$$
\(\Omega \subset \mathbb{R}^n, \ u \in W^{1,p}(\Omega)^n, \ 1 < p < \infty \)

The first case of Korn’s Inequality:

\[
\| Du \|_{L^p(\Omega)^n} \leq C \left\{ \| u \|_{L^p(\Omega)^n} + \| \varepsilon(u) \|_{L^p(\Omega)} \right\}.
\]
\[\Omega \subset \mathbb{R}^n, \quad u \in W^{1,p}(\Omega)^n, \quad 1 < p < \infty \]

\[\| Du \|_{L^p(\Omega)^n} \leq C \left\{ \| u \|_{L^p(B)^n} + \| \varepsilon(u) \|_{L^p(\Omega)} \right\}. \]
$\Omega \subset \mathbb{R}^n$, $u \in W^{1,p}(\Omega)^n$, $1 < p < \infty$

(Second Case)

$\|Du\|_{L^p(\Omega)^n} \leq C\|\varepsilon(u)\|_{L^p(\Omega)}$
\[\Omega \subset \mathbb{R}^n, \quad u \in W^{1,p}(\Omega)^n, \quad 1 < p < \infty \]

(Second Case)

\[\| Du \|_{L^p(\Omega)^n} \leq C \| \varepsilon(u) \|_{L^p(\Omega)} \]

\[\int_{\Omega} \frac{Du - Du^t}{2} = 0 \]
Definition

John Domain

Let $\Omega \subset \mathbb{R}^n$ be an open bounded set, and $x_0 \in \Omega$. We say that Ω is a C-John domain with respect to x_0 if for any $y \in \Omega$ there exists a curve $\rho : [0, l] \rightarrow \Omega$, parametrized by arclength such that $\rho(0) = y$, $\rho(l) = x_0$ and $d_\partial(\rho(t)) \geq Ct$.
Korn's Inequality and Domains
Korn's Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Gabriel Acosta and Ignacio Ojea

Weighted Korn Inequalities for General External Cusps
Bogovskii’s arguments for $u \in W^{1,p}_0$ such that $\text{div} u = f$, in domains star-shaped w.r.t. a ball can be generalized.
In particular general Korn’s Inequality (and second case) holds for John domains (A.-Durán-Muschietti, 2006)
Korn's Inequality and Domains
Korn's Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Gabriel Acosta and Ignacio Ojea

Weighted Korn Inequalities for General External Cusps
Korn's Inequality and Domains
Korn's Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Gabriel Acosta and Ignacio Ojea
Weighted Korn Inequalities for General External Cusps
Hölder α domains, $d = d_{\partial \Omega}$,

$$\|d^{1-\alpha} Du\|_{L^p(\Omega)} \leq C \left\{ \|u\|_{L^p(\Omega)}^n + \|\varepsilon(u)\|_{L^p(\Omega)} \right\}$$ \hspace{1cm} (1)

(A.-Durán-Lombardi 2006)
Hölder α domains, $\alpha \leq \beta \leq 1$

\[\| d^{1-\beta} Du \|_{L^p(\Omega)} \leq C \left\{ \| u \|_{L^p(\Omega)^n} + \| \varepsilon(u) d^{\alpha-\beta} \|_{L^p(\Omega)} \right\} \quad (1)\]

(A.-Durán-Lombardi 2006)
External Cusp $\Omega = \{(x, y) \in (0, 1) \times \mathbb{R}^{n-1} : \|y\| < x^\gamma\}$
Distance to the tip of the cusp $d = d_0$, if $(x, y) \in \Omega$ $d = d_0 \sim x$

$\forall B \subset \subset \Omega$

$$\| d^{\gamma-1} Du \|_{L^p(\Omega)} \leq C \left\{ \| u \|_{L^p(B)^n} + \| \varepsilon(u) \|_{L^p(\Omega)} \right\}$$

(Durán-López García 2010)
Distance to the tip of the cusp $d = d_0$, if $(x, y) \in \Omega \ d = d_0 \sim x$

$B \subset \subset \Omega$

$$\| \phi'(x)Du \|_{L^p(\Omega)} \leq C\left\{ \| u \|_{L^p(B)^n} + \| \varepsilon(u) \|_{L^p(\Omega)} \right\}$$

(Durán-López García 2010)

Calling $\phi(x) = x^\gamma$
Distance to the tip of the cusp $d = d_0 \sim x$, $0 \leq \beta$,

$$\| d^{\beta} Du \|_{L^p(\Omega)} \leq C \left\{ \| u \|_{L^p(B)^n} + \| \varepsilon(u) d^{1-\gamma+\beta} \|_{L^p(\Omega)} \right\}$$

(Durán-López García 2010)
For $\beta = 0$,

$$\|Du\|_{L^p(\Omega)} \leq C\left\{\|u\|_{L^p(B)^n} + \|\varepsilon(u)\phi^{-1}\|_{L^p(\Omega)}\right\}$$

(Durán-López García 2010)
Korn's Inequality and Domains
Korn's Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach
Inequality \mathcal{I}, $\int_{\Omega} w = 0$
$w = (Du - Du^t) / 2$
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Ω

Gabriel Acosta and Ignacio Ojea

Weighted Korn Inequalities for General External Cusps
Korn's Inequality and Domains
Korn's Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Weighted Korn Inequalities for General External Cusps

Gabriel Acosta and Ignacio Ojea

R_1

R_2
Korn's Inequality and Domains
Korn's Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

\[A_1 = \frac{1}{|R_1|} \int_{R_1} w \quad A_2 = \frac{1}{|R_2|} \int_{R_2} w \]
\[\int_{\Omega} w^p = \int_{R_1} w^p + \int_{R_2} w^p \leq C(\int_{R_1} (w - A_1)^p + \int_{R_2} (w - A_2)^p + \int_{R_1} A_1^p + \int_{R_2} A_2^p) \]
A_1 |R_1| + A_2 |R_2| = 0
\[\int_{R_1} A_1^p + \int_{R_2} A_2^p = A_1^p |R_1| + A_2^p |R_2| \leq C (A_1 - A_2)^p |R_2| = C \int_{R_2} (A_1 - A_2)^p \]
\[\int_{R_1} A_1^p + \int_{R_2} A_2^p = A_1^p |R_1| + A_2^p |R_2| \leq C (A_1 - A_2)^p |R_1| = C \int_{R_2} (A_1 - A_2)^p \]
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Weighted Korn Inequalities for General External Cusps
\[\int_{R_2} (A_1 - A_2)^p \leq C (\int_{R_2} (A_1 - A_{1,2})^p + \int_{R_2} (A_{1,2} - A_2)^p) \]
\[\int_{R_2} (A_1 - A_2)^p \leq C \left(\int_{R_1 \cap R_{1,2}} (A_1 - A_{1,2})^p + \int_{R_2 \cap R_{1,2}} (A_{1,2} - A_2)^p \right) \]
\[\int_{R_1 \cap R_{1,2}} (A_1 - A_{1,2})^p \]
\[\int_{R_1 \cap R_{1,2}} (A_1 - A_{1,2})^p \leq C \left(\int_{R_1 \cap R_{1,2}} (A_1 - u)^p + \int_{R_1 \cap R_{1,2}} (u - A_{1,2})^p \right) \]
$\int_{R_1 \cap R_{1,2}} (A_1 - A_{1,2})^p \leq C(\int_{R_1 \cap R_{1,2}} (A_1 - u)^p + \int_{R_1 \cap R_{1,2}} (u - A_{1,2})^p) \leq C(\int_{R_1} (A_1 - u)^p + \int_{R_{1,2}} (u - A_{1,2})^p)$
The final constant depends on the ratios $\frac{|R_i|}{|R_j|}, \frac{|R_i|}{|R_{i,j}|}$ with $i, j \in \{1, 2\}$.
The final constant depends on the ratios $\frac{|R_i|}{|R_j|}, \frac{|R_i|}{|R_{i,j}|}$ with $i, j \in \{1, 2\}$ and on the individual constants of the inequality \mathcal{I} for each sub-domain $R_1, R_2, R_{1,2}$.
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

\[\bigcup_i R_i \subset \Omega \]

Gabriel Acosta and Ignacio Ojea
Weighted Korn Inequalities for General External Cusps
\[\bigcup_{i} R_{i,i+1} \subset \Omega \]
\[|\Omega \setminus \bigcup_i R_i| = 0 \]
\(C_i \) the constant of the inequality \(\mathcal{I} \) on \(R_i \).
the ratios \(\frac{|R_i|}{|R_j|}, \frac{|R_j|}{|R_{i,i+1}|} \leq C \)
you can bound the constant of the inequality I in Ω by

$$\#(\text{rect}) \max \{C_i\}$$
a and b are C-comparable, and we write $a \sim_{C} b$, if $\frac{1}{C} a \leq b \leq Ca$.
With $R \subset \mathbb{R}^n$ we denote an open rectangle with edges parallels to the coordinate axis. $len_i(R)$ is the length of the R’s i-th edge.
R_1, R_2 two rectangles, we write $R_1 \sim_C R_2$ if $\text{len}_i(R_1) \sim_C \text{len}_i(R_2)$
Definition
A countable collection of rectangles $\mathcal{C} = \{R_i\}$ for which $\sum_i |R_i| < \infty$, is called a *Chain of Rectangles* if a) $\overline{R}_i \cap \overline{R}_j = \emptyset$ for $|i - j| > 1$, b) for any i, R_i and R_{i+1} are touching, and c) there exists a constant C such that $R_i \sim_C R_{i+1}$, for any i.
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Gabriel Acosta and Ignacio Ojea

Weighted Korn Inequalities for General External Cusps
Remark

there exists a rectangle $R_{i,i+1} \subset \overline{R_i} \cup \overline{R_{i+1}}$ and a constant \tilde{C} depending only on C, such that

$$R_{i,i+1} \sim \tilde{C} (R_{i,i+1} \cap R_i) \sim \tilde{C} R_i \sim \tilde{C} (R_{i,i+1} \cap R_{i+1}) \sim \tilde{C} R_{i+1}$$
Remark

thanks to that

\[|R_{i,i+1}| \sim_{\tilde{C}} |(R_{i,i+1} \cap R_i)| \sim_{\tilde{C}} |R_i| \sim_{\tilde{C}} |(R_{i,i+1} \cap R_{i+1})| \sim_{\tilde{C}} |R_{i+1}| \]

with \(\tilde{C} \) depending only on \(C \).
Definition
The collection of intermediate rectangles $R_{i,i+1}$ is denoted with $\mathcal{C}_I = \{R_{i,i+1}\}$.
Theorem (Second Case of Korn’s Inequality for Chains of Rectangles)

Let $C = \{ R_i \}$ be a chain of rectangles, and C_i the constants for the second case of Korn’s inequality on R_i.

A domain Ω, such that for any i, $R_i, R_{i+1} \subset \Omega$ and $|\Omega \setminus \bigcup C| = 0$.

Then for any $u \in W^{1,p}(\Omega)^n$ such that $\frac{1}{|\Omega|} \int_{\Omega} \frac{Du - Du^t}{2} = 0$ we have

$$
\|Du\|_{L^p(\Omega)^{n \times n}} \leq C(1 + A)\|\varepsilon(u)\|_{L^p_\sigma(R)^{n \times n}},
$$

$$
A = \sup_{k > 0} \left(\sum_{j=k}^{\infty} |R_j|^{1/p} \right)^{1/p} \left(\sum_{j=0}^{k} |R_j|^{1-p'} \right)^{1/p'},
$$

and the weight σ is constant on each R_i being $\sigma|_{R_i} = C_i$.

Gabriel Acosta and Ignacio Ojea

Weighted Korn Inequalities for General External Cusps
If we assume (for instance) that for any k, $|R_{k+1}| \leq \alpha_k |R_k|$ with $\alpha_k \leq \alpha < 1$: we get

$$A \leq \left(\frac{1}{1 - \alpha} \right)^{1/p} \left(\frac{1}{1 - \alpha^{p'}} \right)^{1/p'},$$

and therefore

$$\| Du \|_{L^p(\Omega)^{n \times n}} \leq C \| \varepsilon(u) \|_{L^p_{\sigma}(R)^{n \times n}}.$$

the weight σ is constant on each R_i being $\sigma|_{R_i} = C_i$.

Gabriel Acosta and Ignacio Ojea

Weighted Korn Inequalities for General External Cusps
Taking into account that $C_i \leq C \frac{L_{M_i}}{L_{m_i}}$ (a particular case for convex domains Durán 2012) we get

$$\|Du\|_{L^p(\Omega)^n} \leq C \|\varepsilon(u)\|_{L^p_{\sigma}(R)^n}.$$

the weight σ is constant on each R_i being $\sigma|_{R_i} = \frac{L_{M_i}}{L_{m_i}}$.
Consider a weight ω

$$\omega(x) \sim \omega_{R_i} \sim \omega_{R_{i+1}} \forall i, \forall x \in R_i.$$

being ω_{R_i} appropriate constants. The same proof:

$$\|Du\|_{L^p(\Omega)^n} \leq C\|\varepsilon(u)\|_{L^p_{\omega_\sigma(R)}}.$$

(for any k, $\omega(R_{k+1}) \leq \alpha_k \omega(R_k)$ with $\alpha_k \leq \alpha < 1$)
Everything done as far for the second case of Korn’s inequality for chains of rectangles can be done for Poincaré. Since the constant in the Poincaré inequality for rectangles (and in general for convex domains) depends only on the diameter of the rectangle, the weight involved in the inequality can be weakened as it is stated below.
Theorem (Poincaré inequality for Chains of Rectangles)

Same hypotheses:
Then for any \(u \in W^{1,p}_\omega(\Omega)^n \) such that \(\frac{1}{\omega(\Omega)} \int_{\Omega} u \omega = 0 \), we have

\[
\|u\|_{L^p_\omega(\Omega)} \leq C \|Du\|_{L^p_{\omega \sigma}(\Omega)},
\]

where the weight \(\sigma \) is constant on each \(R_i \) and can be taken as \(\sigma|_{R_i} = L_{M_i} \).
Second Case of Korn’s Inequality + Poincaré Inequality yields
Korn’s inequality of the form

$$\| Du \|_{L^p(\Omega)^n} \leq C \left\{ \| u \|_{L^p(B)^n} + \| \varepsilon(u) \|_{L^p_{\omega\sigma}(\Omega)} \right\}.$$
The job done for chains of rectangles can be easily generalized as follows.
Definition
A collection of open sets $\mathcal{W} = \{\Omega_i\}$ such that $\Omega_i \cap \Omega_j = \emptyset$ is called a chain of quasi-rectangles if a) exists a chain of rectangles $\mathcal{C} = \{R_i\}$ such that $R_i \subset \Omega_i \subset CR_i$, and b) there is a fixed constant C such that $C_{K_i} \leq C \frac{L_{M_i}}{L_{m_i}}$ and $C_{P_i} \leq C L_{M_i}$ being C_{K_i} and C_{P_i} the constants for the Korn’s second inequality and Poincaré inequality for Ω_i, respectively.
Theorem (Second Case of Korn’s Inequality for Chains of Quasi-Rectangles)

Let \(\mathcal{W} = \{\Omega_i\} \) be a chain of quasi-rectangles, and \(C_i \) the constants for the second case of Korn’s inequality on \(\Omega_i \).

A domain \(\Omega \), such that for any \(i \), \(\Omega_i, R_{i,i+1} \subset \Omega \) and \(|\Omega \setminus \bigcup \mathcal{W}| = 0 \).

If \(|\Omega_{k+1}| \leq \alpha_k |\Omega_k| \) \(k \), \(\alpha_k \leq \alpha < 1 \).

Then for any \(u \in W^{1,p}(\Omega)^n \) such that \(\frac{1}{|\Omega|} \int_{\Omega} \frac{Du - Du^t}{2} = 0 \) we have

\[
\| Du \|_{L^p(\Omega)^{n \times n}} \leq C \| \varepsilon(u) \|_{L^p_{\sigma}(R)^{n \times n}},
\]

where the weight \(\sigma \) is constant on each \(\Omega_i \) being \(\sigma|_{R_i} = C_i = \frac{L_{Mi}}{L_{mi}} \).
The weighted version also follows in the same fashion.
Consider a chain of quasi-rectangles $\mathcal{W} = \{\Omega_i\}$, such that each R_i of the associated chain of rectangles has $n-1$ short edges of equal size that we denote $l(R_i) = l_i$ and a long edge (the vertical, i.e. along the x_n axis) $L(R_i) = L_i$.
Application to external cusps
Application to external cusps
Consider a domain Ω, such that for any i, $\Omega_i, R_{i,i+1} \subset \Omega$ and $|\Omega \setminus \bigcup \mathcal{W}| = 0$.
Application to external cusps
Application to external cusps
Then for any \(u \in W^{1,p}(\Omega)^n \) such that \(\frac{1}{|\Omega|} \int_{\Omega} \frac{Du - Du^t}{2} = 0 \) we have

\[
\|Du\|_{L^p(\Omega)} \leq C \|\varepsilon(u)\|_{L^p_{\sigma}(\Omega)},
\]

where the weight \(\sigma \) is constant on each \(\Omega_i \) being \(\sigma|_{R_i} = C_i = \frac{L_i}{l_i} \).
Then for any $u \in W^{1,p}(\Omega)^n$ such that $\frac{1}{|\Omega|} \int_{\Omega} \frac{Du-Du^t}{2} = 0$ we have

$$\|Du\|_{L^p(\Omega)} \leq C \|\varepsilon(u)\phi^{-1}\|_{L^p(\Omega)},$$

being ϕ the profile of the chain of rectangles.
Korn’s Inequality for Chains of Rectangles

Korn Inequalities for Chains of Quasi-Rectangles

Application to external cusps

The extension approach

\[\phi = x^2 \]

\[L_3 \]

\[L_2 \]

\[L_1 \]

\[l_1 l_2 \]

\[l_3 \]

\[\phi' = l/L \]

Gabriel Acosta and Ignacio Ojea

Weighted Korn Inequalities for General External Cusps
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Gabriel Acosta and Ignacio Ojea
Weighted Korn Inequalities for General External Cusps
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

\[\#(\text{quasirect}) \max \{ C_i \} \]
$4 \max \{ C_i \}$
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

\[\frac{L}{\ell} \max \{ C_i \} \]
Definition

Uniform Domain Let Ω be a domain in \mathbb{R}^n, we say that Ω is a uniform domain if for every pair of points x, y in Ω there is a rectifiable curve $\gamma \subset \Omega$ joining x and y:

$$\ell(\gamma) \leq \frac{1}{\varepsilon}|x - y|$$

$$d_\partial(z) \leq \varepsilon \frac{|x - z||z - y|}{|x - y|} \quad \forall z \in \gamma.$$
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Gabriel Acosta and Ignacio Ojea
Weighted Korn Inequalities for General External Cusps
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Weighted Korn Inequalities for General External Cusps
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Gabriel Acosta and Ignacio Ojea
Weighted Korn Inequalities for General External Cusps
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Weighted Korn Inequalities for General External Cusps
Uniform \subset John
\[\mathcal{W} = \mathcal{W}(\Omega) \quad \mathcal{W}^c = \mathcal{W}((\Omega^c)^c) \]
\[\mathcal{W} = \mathcal{W}(\Omega) \quad \mathcal{W}^c = \mathcal{W}((\Omega^c)^0) \]
\[\mathcal{W} = \mathcal{W}(\Omega) \quad \mathcal{W}^c = \mathcal{W}((\Omega^c)^c) \]
$\mathcal{W} = \mathcal{W}(\Omega) \quad \mathcal{W}^c = \mathcal{W}((\Omega^c)^o)$
\[\mathcal{W} = \mathcal{W}(\Omega) \quad \mathcal{W}^c = \mathcal{W}((\Omega^c)^o) \]
$\mathcal{W} = \mathcal{W}(\Omega) \quad \mathcal{W}^c = \mathcal{W}((\Omega^c)^o)$
$\mathcal{W} = \mathcal{W}(\Omega) \quad \mathcal{W}^c = \mathcal{W}((\Omega^c)^0)$

$Q, Q_1 \in \mathcal{W}$, Finite Chain Between Q^*, Q_1^*
Korn’s Inequality and Domains
Korn’s Inequality for Chains of Rectangles
Korn Inequalities for Chains of Quasi-Rectangles
Application to external cusps
The extension approach

Weighted Korn Inequalities for General External Cusps
For every cube $T \in \mathcal{W}(\Omega)$, let us define:

$$P_T(x) = a + M(x - x_T)$$

(2)

where $a \in \mathbb{R}^n$ and $M = (m_{ij}) \in \mathbb{R}^{n \times n}$ are defined by:

$$a = \frac{1}{|T|} \int_T u \quad M_{i,j} = \frac{1}{2|T|} \int_T \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)$$

and x_T is the center of T.
Thank you!