On Poincaré’s and Lions’ lemma and on De Rham’s theorem

Chérif Amrouche

Joint work with
Philippe G. Ciarlet, City University of Hong-Kong

Laboratoire de Mathématiques et de leurs Applications
CNRS UMR 5142
Université de Pau et des Pays de l’Adour

Journées Singulières Augmentées 2013
Conférence en l’honneur de Martin Costabel pour ses 65 ans
Rennes, August, 26-30
Outline

I. Weak versions of a classical theorem of Poincaré
II. The divergence operator
III. The curl operator
I. Weak versions of a classical theorem of Poincaré

In this work, we assume that Ω is a bounded open connected of \mathbb{R}^3 with Lipschitz-continuous boundary. The notation X', \langle, \rangle_X denotes a duality pairing between a topological space X and its dual X'. We shall use bold characters for the vector fields or the vector spaces and the non-bold characters for the scalars. The letter C denotes a constant that not necessarily the same at its various occurrences.
We set

\[V = \{ \varphi \in H^1_0(\Omega); \, \text{div} \, \varphi = 0 \}, \]

\[H_0(\text{div}, \Omega) = \{ \mathbf{v} \in L^2(\Omega), \, \text{div} \, \mathbf{v} \in L^2(\Omega), \, \mathbf{v} \cdot \mathbf{n} = 0 \text{ on } \Gamma \} \]

and we note that

\[[H_0(\text{div}, \Omega)]' \hookrightarrow H^{-1}(\Omega). \]
Let Ω be a bounded, connected open subset of \(\mathbb{R}^3 \) with a Lipschitz-continuous boundary. The followings are equivalent:

(i) \(\text{div} : H^1_0(\Omega)/V \rightarrow L^2_0(\Omega) \) is an isomorphism.

(ii) **Lions lemma**: \(L^2(\Omega) = \{ q \in H^{-1}(\Omega); \nabla q \in H^{-1}(\Omega) \} \).

(iii) **Necas inequality**:

\[
\forall q \in L^2(\Omega), \quad \|q\|_{L^2(\Omega)} \leq C(\|q\|_{H^{-1}(\Omega)} + \|\nabla q\|_{H^{-1}(\Omega)}) \tag{1}
\]

(iv) **Korn’s inequality**:

\[
\forall v \in H^1(\Omega), \quad \|v\|_{H^1(\Omega)} \leq C(\|v\|_{L^2(\Omega)} + \|e(v)\|_{L^2(\Omega)}) \tag{2}
\]

with \(e(v)_{ij} = \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \).

(v) **Weak lemma of Poincaré**: Given any distribution \(f \in H_0(\text{div}, \Omega)' \) that satisfies

\[
\text{curl } f = 0 \text{ in } H^{-2}(\Omega) \quad \text{and} \quad H_0(\text{div}, \Omega)' \cdot f, v \cdot H_0(\text{div}, \Omega) = 0 \quad \text{for all } v \in K_T(\Omega), \tag{3}
\]

there exists a scalar potential \(\chi \in L^2(\Omega) \) such that

\[
f = \text{grad } \chi \quad \text{in } \Omega \quad \text{and} \quad \|\chi\|_{L^2(\Omega)} \leq C\|f\|_{H_0(\text{div}, \Omega)'} \tag{4}
\]
Recall first the original Poincaré Lemma:

Let Ω a bounded open **simply connected** of \mathbb{R}^3 and let

$$f \in C^1(\Omega) \quad \text{such that} \quad \text{curl } f = 0.$$

Then

$$f = \text{grad } \chi \quad \text{with} \quad \chi \in C^2(\Omega).$$
We suppose that Ω is an open set multiply connected with a boundary Γ non connected. We denote $\Gamma = \bigcup_{i=0}^{I} \Gamma_i$ with Γ_i the connected components of Γ

and $\Sigma = \bigcup_{j=1}^{J} \Sigma_j$ and Σ_j a finite number of cuts.

$\Omega^\circ = \Omega \setminus \bigcup_{j=1}^{J} \Sigma_j$ is simply connected.
We recall also that \(K_T(\Omega) \) is defined by

\[
K_T(\Omega) = \{ v \in L^p(\Omega); \text{div} \, v = 0, \, \text{curl} \, v = 0 \text{ in } \Omega \text{ and } v \cdot n = 0 \text{ on } \Gamma \}.
\]

is spanned by \(\widetilde{\text{grad}} \, q^T_j \) for \(1 \leq j \leq J \), where each \(q^T_j \) is solution in \(H^1(\Omega^\circ) \) of the problem solution of:

\[
\begin{cases}
-\Delta q^T_j = 0 & \text{in } \Omega^\circ, \\
\partial_n q^T_j = 0 & \text{on } \Gamma, \\
\begin{bmatrix} q^T_j \end{bmatrix}_k = \text{constant} & \text{and } [\partial_n q^T_j]_k = 0, \ 1 \leq k \leq J, \\
\langle \partial_n q^T_j, 1 \rangle_{\Sigma_k} = \delta_{jk}, \ 1 \leq k \leq J,
\end{cases}
\]

We note that \(K^p_T(\Omega) = \{0\} \) if \(J = 0 \), i.e \(\Omega \) is simply connected.
Proof of Theorem 1. First, we have the following identity
\[\{ q \in H^{-1}(\Omega); \nabla q \in H^{-1}(\Omega) \} = \{ q \in H^{-1}(\Omega); \nabla q \in H_0(\text{div}, \Omega)' \}, \]
because the density of \(\mathcal{D}(\Omega) \) in the space
\[H_0^1(\text{div}; \Omega) = \{ \mathbf{v} \in H_0^1(\Omega); \text{div } \mathbf{v} \in H_0^1(\Omega) \}. \]

1. Implication (i) \(\implies \) (ii). Remark first that the isomorphism of point (i) is equivalent to the following
\[
\text{grad} : L^2(\Omega)/\mathbb{R} \mapsto V^\circ
\]
isomorphism, where the polar set \(V^\circ \) is defined by
\[
V^\circ = \{ \mathbf{f} \in H^{-1}(\Omega); \forall \mathbf{v} \in V, <\mathbf{f}, \mathbf{v}> = 0 \}.
\]
Point (ii) is then consequence of the density of \(\mathcal{D}(\Omega) \) in \(H_0^1(\text{div}; \Omega) \).
2. **Implication (ii) \implies (iii)**. Point (iii) is a simple consequence of Banach’s theorem, the continuity of the identity from $L^2(\Omega)$ into $H^{-1}(\Omega)$ and the continuity of the gradient operator from $L^2(\Omega)$ into $H^{-1}(\Omega)$.

3. **Implication (iii) \implies (i)**. Using the compactness imbedding of $L^2(\Omega)$ into $H^{-1}(\Omega)$ and Peetre-Tartar theorem, we deduce the isomorphism (5) and by duality the point (i).

4. **Implication (ii) \implies (iv)**. As in Duvaut-Lions, we prove first the identity

\[
H^1(\Omega) = \{ v \in L^2(\Omega); e(v) \in L^2(\Omega) \}.
\]

Using Banach’s theorem, we deduce the Korn’s inequality.
5. Implication (i) \implies (v). Let $f \in H_0(\text{div}, \Omega)'$ that satisfies (3). Hence, there exist $h \in L^2(\Omega)^3$ and $\chi_0 \in L^2(\Omega)$ such that

$$f = h + \text{grad} \ \chi_0 \quad \text{in} \ \Omega. \quad (6)$$

Observe that, thanks to the density of $\mathcal{D}(\Omega)$ in $H_0(\text{div}, \Omega)$,

$$H_0(\text{div}, \Omega)' < \text{grad} \ \chi_0, \ v > H_0(\text{div}, \Omega) = 0 \quad \text{for all} \ v \in K_T(\Omega).$$

Therefore, as for f, the function $h \in L^2(\Omega)^3$ satisfies relations (3). We will prove that for any vector field $v \in H_0(\text{div}, \Omega)$ such that $\text{div} \ v = 0$ in Ω, there holds

$$\int_{\Omega} h \cdot v \, dx = 0.$$

Let

$$z = \sum_{j=1}^{J} < v \cdot n, 1 >_{\Sigma_j} \widetilde{\text{grad}} \ q_j^T$$

and $w = v - z$. According to Amrouche-Bernardi-Dauge-Girault (M2AS, 1998), there exists a vector potential $\psi \in L^2(\Omega)^3$ that satisfies $w = \text{curl} \ \psi$, $\text{div} \ \psi = 0$ in Ω and $\psi \times n = 0$ on Γ. Hence

$$\int_{\Omega} h \cdot v \, dx = \int_{\Omega} h \cdot \text{curl} \ \psi \, dx = 0.$$

We deduce from (5) that $h = \text{grad} \ \chi$, with $\chi \in H^1(\Omega)$.
6. Implication (v) \implies (ii). Let $q \in H^{-1}(\Omega)$ such that $\nabla q \in H_0(\text{div}, \Omega)'$. We will prove that $q \in L^2(\Omega)$. Setting $f = \nabla q$, we observe that f satisfies (3), so that we have

$$\nabla q = \nabla \chi$$

for some $\chi \in L^2(\Omega)$ and then $q = \chi$ up to additive constant.

7. Implication (iv) \implies (ii). Let $q \in H^{-1}(\Omega)$ such that $\nabla q \in H_0(\text{div}, \Omega)'$. We will prove that $q \in L^2(\Omega)$. Suppose that property (iv) holds. We prove first that

$$\inf_{d \in R(\Omega)} \| \mathbf{v} + d \|_{L^2(\Omega)} \leq C \| e(\mathbf{v}) \|_{L^2(\Omega)} \quad (7)$$

for any $\mathbf{v} \in H^1(\Omega)$ with $\mathbf{v} \cdot \mathbf{n} = 0$ on Γ. The space $R(\Omega)$ contains the elements $\mathbf{d} = \mathbf{b} \times \mathbf{x}$ with \mathbf{b} an arbitrary constant vector of \mathbb{R}^3. Using Lax-Milgram lemma, there exists a unique $\mathbf{u} \in H^1(\Omega)$, up an additive element of $R(\Omega)$ when Ω is axisymmetric, satisfying
\[
\begin{aligned}
\mathcal{E}_T \begin{cases}
- \Delta u - \nabla \text{div} u = \nabla q & \text{in } \Omega, \\
\mathbf{u} \cdot \mathbf{n} = 0 & \text{on } \Gamma, \\
[e(u)n]_\tau = 0 & \text{on } \Gamma.
\end{cases}
\end{aligned}
\]

We deduce now that \(\Delta u \in H_0(\text{div}, \Omega)' \) and then we have

\[
\Delta u = \psi + \nabla \theta \quad \text{with} \quad \psi \in L^2(\Omega) \quad \text{and} \quad \theta \in L^2(\Omega).
\]

As \(\psi \) is also a gradient, then

\[
\psi = \nabla \chi \quad \text{with} \quad \chi \in H^1(\Omega).
\]

Finally, as \(\Omega \) is connected and

\[
\nabla (q + \text{div} \mathbf{u} + \theta + \chi) = 0,
\]

we deduce that \(q \in L^2(\Omega) \).
II. The divergence operator

Theorem 2

Let Ω be a bounded, connected open subset of \mathbb{R}^n, with $n \geq 2$ and with a Lipschitz-continuous boundary. The following operator

$$\text{div} : H^1_0(\Omega)/V \rightarrow L^2_0(\Omega)$$

is an isomorphism.

Proof. To prove (8), we will prove that for any $f \in L^2_0(\Omega)$, there exists a vector field $u \in H^1_0(\Omega)$ such that $\text{div} \, u = f$ and satisfying the inequality

$$\|u\|_{H^1(\Omega)} \leq C\|f\|_{L^2(\Omega)}. \quad (9)$$
First step. We suppose that Ω is starlike with respect to some open ball B contained it in. In this case, the vector $u := Rf$ is constructed explicitly.

i) **Construction of R.** Suppose $f \in D(\Omega)$ and let $\tilde{f} \in D(\mathbb{R}^n)$ its extension by 0 outside of Ω, with $n \geq 2$. Let θ a fixed function satisfying

$$\theta \in D(\mathbb{R}^n), \quad 0 \leq \theta \leq 1, \quad \text{with supp} \theta \subset B \quad \text{and} \quad \int_{\mathbb{R}^n} \theta = 1.$$

Consider the function $t \mapsto t^n \tilde{f}(y + t(x - y))$, with $t \in \mathbb{R}$ and $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$. Then

$$\frac{d}{dt} (t^n \tilde{f})(y + t(x - y)) = t^{n-1} \nabla_x \cdot ((x - y) \tilde{f}(y + t(x - y))).$$

Multiplying this relation by $\theta(y)$ and integrating with respect y in Ω and with respect t on $]1, \infty[$. Then,

$$f(x) = -\int_{\Omega} \int_{1}^{\infty} \theta(y) t^{n-1} \nabla_x \cdot ((x - y) \tilde{f}(y + t(x - y))) dt \, dy.$$
The following vector field

\[x \in \Omega, \quad u(x) = -\int_{\mathbb{R}^n} (x - y)\theta(y) \int_1^\infty t^{n-1} \tilde{f}(y + t(x - y)) dt \, dy. \]

satisfies, as we will prove later,

\[\text{div} \ u = f \quad \text{in} \ \Omega. \]

(10)

Setting successively \(z = y + t(x - y), \ t = (r - 1)/r, \ s = 1 - r \) and after changing \(z \) into \(y \) and \(s \) into \(t \), we obtain

\[x \in \Omega, \quad u(x) = \int_{\mathbb{R}^n} (x - y)f(y) \int_1^\infty t^{n-1}\theta(y + t(x - y)) dt \, dy. \]

(11)

Setting finally \(r = t|x - y| \), we have also

\[u(x) := Rf(x) = \int_{\Omega} \frac{x - y}{|x - y|^n} f(y) \int_{|x-y|}^\infty \theta(y + r \frac{x - y}{|x - y|}) r^{n-1} dr \, dy. \]

(12)

We verify then that \(\text{supp} \ Rf \) is compact and \(Rf \) is \(C^\infty(\Omega) \).
ii) Proof of div $Rf = f$. We observe first that

$$u(x) = \lim_{\varepsilon \to 0} \int_{|x-y| \geq \varepsilon} \tilde{f}(y) K(x, y) \, dy,$$

where

$$K(x, y) = (x-y) \int_{1}^{\infty} t^{n-1} \theta(y+t(x-y)) \, dt = \frac{x-y}{|x-y|^n} \int_{|x-y|}^{\infty} \theta(y+r \frac{x-y}{|x-y|}) r^{n-1} \, dr.$$

Then

$$\frac{\partial u_i}{\partial x_j}(x) = \lim_{\varepsilon \to 0} \left[\int_{|x-y| \geq \varepsilon} \tilde{f}(y) \frac{\partial K_i}{\partial x_j}(x, y) \, dy + \int_{|x-y| = \varepsilon} \tilde{f}(y) \frac{x_j - y_j}{|x-y|} K_i(x, y) \, d\sigma_y \right]$$

and

$$\int_{|x-y| = \varepsilon} \tilde{f}(y) \frac{x_j - y_j}{|x-y|} K_i(x, y) \, d\sigma_y - \tilde{f}(x) \int_{\Omega} \frac{(x_j - y_j)(x_i - y_i)}{|x-y|^2} \theta(y) \, d\sigma_y$$

$$= \int_{|z|=1} \tilde{f}(x - \varepsilon z) |z|^2 \int_{0}^{\infty} \theta(x + sz)(s + \varepsilon)^{n-1} ds \, d\sigma_z$$

$$- \tilde{f}(x) \int_{|z|=1} z_i z_j \int_{0}^{\infty} \theta(x + sz) s^{n-1} ds \, d\sigma_z.$$
Consequently

\[
\lim_{\varepsilon \to 0} \int_{|x - y| = \varepsilon} \tilde{f}(y) \frac{x_j - y_j}{|x - y|} K_i(x, y) \, d\sigma_y = \tilde{f}(x) \int_{\Omega} \frac{(x_j - y_j)(x_i - y_i)}{|x - y|^2} \theta(y) \, d\sigma_y \quad (14)
\]

Besides, we have

\[
\frac{\partial K_i}{\partial x_j}(x, y) = \delta_{ij} \int_{1}^{\infty} t^{n-1} \theta(y + t(x - y)) \, dt + (x_i - y_i) \int_{1}^{\infty} t^n \frac{\partial \theta}{\partial x_j}(y + t(x - y)) \, dt
\]

\[
= \frac{\delta_{ij}}{|x - y|^n} \int_{0}^{\infty} \theta(x + r \frac{x - y}{|x - y|})(|x - y| + r)^{n-1} \, dr
\]

\[
+ \frac{x_i - y_i}{|x - y|^n} \int_{0}^{\infty} \frac{\partial \theta}{\partial x_j}(x + r \frac{x - y}{|x - y|})(|x - y| + r)^n \, dr. \quad (15)
\]
From this relations, we deduce that

\[\nabla_x \cdot K(x, y) = n \int_1^\infty t^{n-1} \theta(y + t(x - y)) + \int_1^\infty t^n \frac{\partial \theta}{\partial t} \theta(y + t(x - y)) \]

\[= -\theta(x) \]

and

\[\text{div } u(x) = -\theta(x) \int_\Omega f(y)dy + f(x) = f(x) \]

because by assumption the integral of \(f \) is equal to 0.
iii) We will prove now that

$$R : L^2_0(\Omega) \leftrightarrow H^1_0(\Omega)$$

is continuous, that means that

$$\| \nabla R f \|_{L^2(\Omega)} \leq C \| f \|_{L^2(\Omega)}. \quad (16)$$

Thanks to the Newton’s binôme formula, we have the following decomposition:

$$\frac{\partial K_i}{\partial x_j}(x, y) = K_{ij}(x, x - y) + G_{ij}(x, y),$$

where

$$K_{ij}(x, x - y) = \frac{\delta_{ij}}{|x - y|^n} \int_0^{\infty} \theta(x + r \frac{x - y}{|x - y|}) r^{n-1} dr +$$

$$\frac{x_i - y_i}{|x - y|^{n+1}} \int_0^{\infty} \frac{\partial \theta}{\partial x_j}(x + r \frac{x - y}{|x - y|}) r^n dr$$

$$: = \frac{k_{ij}(x, x - y)}{|x - y|^n}$$
and \(G_{ij} \) satisfies the following estimate:

\[
|G_{ij}(x, y)| \leq C\delta(\Omega)^{n-1}/|x - y|^{n-1},
\]

with \(C = C(\theta, n) \).

We deduce from (13)-(15) that

\[
\frac{\partial (Rf)_i}{\partial x_j}(x) = \int_{\Omega} K_{ij}(x, x - y)f(y)dy + \int_{\Omega} G_{ij}(x, y)f(y)dy +
\]

\[
+ f(x) \int_{\Omega} \frac{(x_j - y_j)(x_i - y_i)}{|x - y|^2} \theta(y) dy
\]

\[
: = J_1 f(x) + J_2 f(x) + J_3 f(x).
\]
It is clear that $|J_3 f(x)| \leq |f(x)|$ and then

$$
\|J_3 f\|_{L^2(\Omega)} \leq \|f\|_{L^2(\Omega)}.
$$

We have also

$$
|J_2 f(x)| \leq C\delta(\Omega)^{n-1}\left|\int_{\mathbb{R}^n} \tilde{f}(y) \frac{|x-y|^{n-1}}{|x-y|^{n-1}} dy\right|.
$$

That means that

$$
|J_2 f(x)| \leq C\delta(\Omega)^{n-1}|I_1 \tilde{f}(x)|,
$$

where $I_1 \tilde{f}$ is the Riesz potential of order 1. Hence

$$
\|J_2 f\|_{L^2(\Omega)} \leq C\delta(\Omega)^{n-1}\|I_1 \tilde{f}\|_{L^2(\mathbb{R}^n)}.
$$
Recall now that for any $\varphi \in \mathcal{D}(\mathbb{R}^n)$,

$$\|\nabla I_1 \varphi\|_{L^2(\mathbb{R}^n)} \leq C\|\varphi\|_{L^2(\mathbb{R}^n)}$$

and by duality, for any $\varphi \in \mathcal{D}(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \varphi = 0$,

$$\|I_1 \varphi\|_{L^2(\mathbb{R}^n)} \leq C\|\varphi\|_{W_0^{-1,2}(\mathbb{R}^n)}$$

where $W_0^{-1,2}(\mathbb{R}^n)$ is the dual space of

$$W_0^{1,2}(\mathbb{R}^n) = \{v \in \mathcal{D}'(\mathbb{R}^n); \frac{v}{\omega} \in L^2(\mathbb{R}^n) \nabla v \in L^2(\mathbb{R}^n)\}$$

with

$$\omega = 1+|x| \text{ if } n \geq 3 \text{ and } \omega = (1+|x|)\ln(2+|x|) \text{ if } n = 2.$$

Applying the previous inequality to \tilde{f}, because Ω is bounded, we get

$$\|I_1 \tilde{f}\|_{L^2(\mathbb{R}^n)} \leq C\|\tilde{f}\|_{W_0^{-1,2}(\mathbb{R}^n)} \leq C\|f\|_{L^2(\Omega)}.$$

Finally, concerning the estimate of $J_1 f$, we need the following lemma due to Calderon-Zygmund.
Lemma 3 (Calderon-Zygmund)

Let be $K(x, y) = N(x, x - y)$, where N is homogeneous of degre $-n$ in y and

i) for any x,

$$
\int_{|y|=1} N(x, y) dy = 0,
$$

ii) there exist $q > 0$ and $C > 0$ such that

$$
\forall x, \int_{|y|=1} |N(x, y)|^q dy \leq C,
$$

then the operator defined by

$$
Kf(x) = \int_{\mathbb{R}^n} K(x, y)f(y) dy
$$

is continuous from $L^p(\mathbb{R}^n)$ into $L^p(\mathbb{R}^n)$, for any p such that $q/(q - 1) \leq p < \infty$.
Applying this lemma with $N(x, y) = K_{ij}(x, y)$. It is clear that $K_{ij}(x, y)$ is homogeneous of degree $-n$ in y and

$$
\int_{|z|=1} K_{ij}(x, z)dz = \int_{|z|=1} \int_0^\infty (\delta_{ij} \theta(x + rz) r^{n-1} dr d\sigma_z + \nabla \theta(x + rz) r^nz_i \partial_x \partial_x \nabla \theta(x + rz) d\sigma_z)
$$

$$
= \int_{\mathbb{R}^n} (\delta_{ij} \theta(x + y) + y_i \partial_x \partial_x \nabla \theta(x + y)) dy = 0
$$

Finally, the property ii) is satisfied by using the fact that supp $\theta \subset B$ and Ω is bounded, that finishes the proof of the continuity property (16) and the first step of the proof of Theorem 1.
Second step. We know that every bounded Lipschitz domain Ω is the union of a finite number of bounded domains, each of which is starlike with respect to an open ball. Thanks to a partition of unity subordinated to this covering, we extend the result of the step 1 to the case where Ω is a bounded Lipschitz domain.
Third step. We have prove that

\[\forall f \in \mathcal{D}(\Omega) \cap L^2_0(\Omega), \quad \exists u \in \mathcal{D}(\Omega) \quad \text{such that} \quad \text{div } u = f \]

with the inequality

\[\| u \|_{H^1(\Omega)} \leq C \| f \|_{L^2(\Omega)}. \]

Let us consider now \(f \in L^2_0(\Omega) \) only. And let \(\psi \in \mathcal{D}(\Omega) \) fixed with \(\int_{\Omega} \psi = 1 \) and

\[f_k \in \mathcal{D}(\Omega) \quad \text{such that} \quad f_k \to f \quad \text{in } L^2(\Omega). \]

Setting \(F_k = f_k - \psi \int_{\Omega} f_k \), then \(F_k \in \mathcal{D}(\Omega) \cap L^2_0(\Omega) \) and there exists \(u_k \in \mathcal{D}(\Omega)^3 \) satisfying \(\text{div } u_k = F_k \), with

\[u_k \to u \in H^1_0(\Omega) \quad \text{and} \quad \text{div } u = f. \]

Moreover

\[\| u \|_{H^1(\Omega)} \leq C \| f \|_{L^2(\Omega)}. \]
Corollary 4 (De Rham in $H^{-1}(\Omega)$ First Version-Necas)

The operator

$$\text{grad} : L^2(\Omega)/\mathbb{R} \mapsto V^\circ$$ \hspace{1cm} (17)

is an isomorphism and we have the following properties:

i) For any $f \in H^{-1}(\Omega)$ satisfying

$$\forall \mathbf{v} \in V, \quad < f, \mathbf{v} > = 0,$$

there exists $\pi \in L^2(\Omega)$, unique up to an additive constant, such that $f = \nabla \pi$.

ii) We have the following inequality:

$$\forall q \in L^2(\Omega), \quad \inf_{k \in \mathbb{R}} \| q + k \|_{L^2(\Omega)} \leq C(\Omega) \| \nabla q \|_{H^{-1}(\Omega)}. \hspace{1cm} (18)$$

In particular, we have also the inequality:

$$\forall q \in L^2(\Omega), \quad \| q \|_{L^2(\Omega)} \leq C(\Omega) (\| q \|_{H^{-1}(\Omega)} + \| \nabla q \|_{H^{-1}(\Omega)}). \hspace{1cm} (19)$$
Proof. The isomorphism’s property of the gradient operator is a simple consequence of the isomorphism (8) of his dual operator.

The property i) is nothing that the surjectivity of the gradient operator.

The inequality (18) of the property ii) means that the inverse of the gradient operator (17) is continuous.

Finally, the inequality (19) can be deduce by the following decomposition:

\[u = u - \frac{1}{|\Omega|} \int_{\Omega} u + \frac{1}{|\Omega|} \int_{\Omega} u \]

and the following inequality which is equivalent to (18):

\[\forall v \in L^2_0(\Omega), \quad \| v \|_{L^2(\Omega)} \leq C(\Omega)\| \nabla v \|_{H^{-1}(\Omega)} \quad (20) \]
Corollary 5.

For any open set ω of Ω, with $meas(\omega) > 0$, there exists $C_\omega > 0$ depending also on Ω such that

$$\forall u \in L^2(\Omega), \quad \|u\|_{L^2(\Omega)} \leq C_\omega (\|u\|_{L^2(\omega)} + \|\nabla u\|_{H^{-1}(\Omega)}).$$

Proof. This is an immediate consequence of Peetre-Tartar theorem, the inequality (19) and the compactness of $L^2(\Omega)$ into $H^{-1}(\Omega)$.
As in Girault-Raviart (1986), we can prove the following corollary.

Corollary 6.

We have the algebraical and topological following identity:

\[X =: \{ u \in L^2_{\text{loc}}(\Omega); \nabla u \in H^{-1}(\Omega) \} = L^2(\Omega). \]
As in Amrouche-Girault (Czech. Math. Journ., 1994), we can prove the following both results.

Theorem 7. (De Rham in $H^{-1}(\Omega)$ Second Version)

Let $f \in H^{-1}(\Omega)$ satisfying

$$\forall v \in V, \quad \langle f , v \rangle = 0,$$

where

$$V = \{ v \in D(\Omega); \text{div } v = 0 \}.$$

Then there exists $\pi \in L^2(\Omega)$, unique up to an additive constant, such that $f = \nabla \pi$. Moreover V is dense in V.

Corollary 8.
Let be $u \in \mathcal{D}'(\Omega)$ such that $\nabla u \in H^{-1}(\Omega)$. Then $u \in L^2(\Omega)$.

We are now in position to give some extensions.

Theorem 9.
For any integer $m \geq 1$, the following operator
\[\text{div} : H_0^{m+1}(\Omega)/V_{m+1} \mapsto H_0^m(\Omega) \cap L_0^2(\Omega) \] (21)
is an isomorphism, where
\[V_{m+1} = \{ \mathbf{v} \in H_0^{m+1}(\Omega); \text{div} \mathbf{v} = 0 \} . \]
Proof. We give here a sketch of the proof and we consider only the case $m = 1$, the same reasoning being available for $m \geq 2$. We will use here the same arguments as in the point iii) of the first theorem concerning the divergence operator defined on $H^1_0(\Omega)$ and we would like to prove the following estimate:

$$\forall f \in H^1_0(\Omega) \cap L^2_0(\Omega), \quad \| \frac{\partial^2 Rf}{\partial x_k \partial x_j} \|_{L^2(\Omega)} \leq C \| f \|_{H^1(\Omega)}$$

for any $1 \leq j, k \leq n$.

Rewriting the relation (12) under the form

$$Rf(x) = \int_{\mathbb{R}^n} \frac{z}{|z|^n} \tilde{f}(x - z) \int_0^\infty \theta(x + s \frac{z}{|z|})(|z| + s)^{n-1} ds \ dy,$$

we obtain

$$\frac{\partial Rf}{\partial x_j}(x) = \int_{\mathbb{R}^n} \frac{z}{|z|^n} \frac{\partial \tilde{f}}{\partial x_j}(x - z) \int_0^\infty \theta(x + s \frac{z}{|z|})(|z| + s)^{n-1} ds \ dy$$

$$+ \int_{\mathbb{R}^n} \frac{z}{|z|^n} \tilde{f}(x - z) \int_0^\infty \frac{\partial \theta}{\partial x_j}(x + s \frac{z}{|z|})(|z| + s)^{n-1} ds \ dy$$

$$= : g_1(x) + g_2(x).$$
Estimate of $\| \frac{\partial g_1}{\partial x_k} \|_{L^2(\Omega)^n}$

As below, we prove that

$$\| \frac{\partial g_1}{\partial x_k} \|_{L^2(\Omega)} \leq C \| \frac{\partial f}{\partial x_j} \|_{L^2(\Omega)}.$$

Estimate of $\| \frac{\partial g_2}{\partial x_k} \|_{L^2(\Omega)^n}$

We remark that g_2 is the same form as $R f$, with the difference that θ is replaced by $\frac{\partial \theta}{\partial x_j}$. Note that we doesn't use the property $\int_B \theta = 1$ to find the estimate of the point iv). That means that with the same raisonning, we obtain

$$\| \frac{\partial g_2}{\partial x_k} \|_{L^2(\Omega)} \leq C \| f \|_{L^2(\Omega)}.$$

Hence we have established the result for $f \in D(\Omega) \cap L^2_0(\Omega)$ and proceeding as in the step 3 of the proof of the first theorem concerning the divergence operator defined on $H^1_0(\Omega)$, we extend this one to the case where $f \in H^1_0(\Omega) \cap L^2_0(\Omega)$.

"C. AMROUCHE"
Chérif AMROUCHE, University of PAU
Corollary 10. (De Rham in $H^{-m-1}(\Omega)$ First Version)

Let m a positive integer and $f \in H^{-m-1}(\Omega)$ satisfying

$$\forall v \in V_{m+1}, \quad \langle f, v \rangle = 0.$$

Then there exists $\pi \in H^{-m}(\Omega)$, unique up to an additive constant, such that $f = \nabla \pi$.
Using then the densité of \mathcal{V} in V_{m+1}, we can prove the following theorem:

Theorem 11. (De Rham in $H^{-m-1}(\Omega)$ Second Version)

Let m a positive integer and $f \in H^{-m-1}(\Omega)$ satisfying the following property:

$$\forall v \in \mathcal{V}, \quad <f, v> = 0.$$

Then there exists $\pi \in H^{-m}(\Omega)$, unique up an additive constant, such that $f = \nabla \pi$.
As application, we can give a new proof of De Rham’s theorem.

Corollary 12 (Original De Rham).

Let $f \in \mathcal{D}'(\Omega)$ satisfying the following property:

$$\forall v \in \mathcal{V}, \quad <f, v> = 0.$$

Then there exists $\pi \in \mathcal{D}'(\Omega)$, unique up an additive constant, such that $f = \nabla \pi$.

Proof. It is an immediate consequence of the fact that we have prove that the divergence operator

$$\text{div} : \mathcal{D}(\Omega)/\mathcal{V} \hookrightarrow \mathcal{D}(\Omega) \cap L^2_0(\Omega).$$

is bijective.
III. The curl operator

Let us introduce the following space:

\[\mathcal{G} = \{ v \in \mathcal{D}(\Omega); \, \text{curl} \, v = 0 \}, \]

where we suppose here that \(\Omega \) is a Lipschitzian bounded domain of \(\mathbb{R}^3 \).

Theorem 13.

Let \(f \in \mathcal{D}'(\Omega) \) satisfying the following property:

\[\forall v \in \mathcal{G}, \quad \langle f, v \rangle = 0. \quad (22) \]

Then there exists \(\psi \in \mathcal{D}'(\Omega) \) with \(\text{div} \, \psi = 0 \) and such that \(f = \text{curl} \, \psi \).
Proof. Note that the condition (22) implies that \(\text{div } f = 0 \), which is a necessary condition for that \(f = \text{curl } \psi \). To prove the result is equivalent to prove that the \text{curl} operator is bijective from \(\mathcal{D}(\Omega)/\mathcal{G} \) onto \(\mathcal{V} \perp K_T(\Omega) \), where

\[
K_T(\Omega) = \{ v \in L^p(\Omega); \text{div } v = 0, \text{curl } v = 0 \text{ in } \Omega \text{ and } v \cdot n = 0 \text{ on } \Gamma \}.
\]

Recall that \(K_T(\Omega) \) is reduced to zero when \(\Omega \) is simply connected.
We will use here the same ideas as in the proof of Theorem 2.
Construction of the operator T.

Let $f \in \mathcal{V}$ satisfying the following property:

$$\forall v \in K_T(\Omega), \quad \int_\Omega f \cdot v = 0.$$

Instead of the operator R, we set

$$Tf(x) := \int_\Omega f(y) \times \frac{x-y}{|x-y|^3} \int_0^\infty \theta(y + r \frac{x-y}{|x-y|}) r^{n-1} dr \ dy,$$

where Ω is starlike with respect to some open ball B contained in and supp $\theta \subset B$. Then, we verify that $f = \text{curl} \ Tf$ and $f = \text{curl} \ Tf \in \mathcal{D}(\Omega)$. And we finish the proof for general Lipschitzian bounded domain as in Theorem 2.

(23)
For Further Reading

Thank you for your attention!