Stability and Instability of Cycled Inverse Scattering Problems

Roland Potthast1,2, Boris Marx3, Alexander Moodey2, Amos Lawless2, Peter Jan van Leeuwen2, Melina Freitag4

1German Meteorological Service (DWD),
2University of Reading, United Kingdom
3University of Göttingen, Germany
4University of Bath, United Kingdom
1 Motivation and Introduction.
Outline

1. Motivation and Introduction.

2. Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation
1 Motivation and Introduction.

2 Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation

3 Convergence Analysis for Cycled Inversion 1: Range Arguments
 - Setup: Constant System
 - Convergence for Data $f \in R(H)$ / Divergence for $f \notin R(H)$
Outline

1 Motivation and Introduction.

2 Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation

3 Convergence Analysis for Cycled Inversion 1: Range Arguments
 - Setup: Constant System
 - Convergence for Data $f \in R(H)$ / Divergence for $f \notin R(H)$

4 Convergence Analysis 2: Regularization of Cycled Inversion
 - Setup: High-Frequency Damping Systems
 - Analysis Error Bounds
1 Motivation and Introduction.

2 Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation

3 Convergence Analysis for Cycled Inversion 1: Range Arguments
 - Setup: Constant System
 - Convergence for Data $f \in R(H)$ / Divergence for $f \notin R(H)$

4 Convergence Analysis 2: Regularization of Cycled Inversion
 - Setup: High-Frequency Damping Systems
 - Analysis Error Bounds

5 Reading ↔ Rennes
Motivation and Introduction

Literature

Moodey, Lawless, P. and van Leeuwen: **Nonlinear error dynamics for cycled data assimilation methods** 2013 Inverse Problems 29 025002

Motivation and Introduction

Motivation I: Inverse Scattering in Applications ...

Medical Imaging via Scattering and Inverse Source Problems

Seismic Exploration
Motivation II: Inversion and Dynamics ...

Describe the system by a state \(\phi \in X \).

You apply an inverse scattering algorithm to reconstruct \(\phi_k \) at time \(t_k \) given data \(f_k \in Y \).

The system evolves from \(\phi_k \) to \(\phi(b)_{k+1} \).

You measure scattering data at \(t_k+1 \) to reconstruct \(\phi_{k+1} \) given measurements \(f_{k+1} \) and the first guess \(\phi(b)_{k+1} \).
Motivation II: Inversion and Dynamics ...

Inverse scattering +
 further knowledge
Motivation II: Inversion and Dynamics ...

Inverse scattering +
 further knowledge
Motivation II: Inversion and Dynamics ...

Inverse scattering +

- further knowledge

- Describe the system by a state $\varphi \in X$.
Inverse scattering +

further knowledge

- Describe the system by a state $\varphi \in X$.
- The state at time t_k is $\varphi_k = \varphi(t_k) \in X$.
Describe the system by a state $\varphi \in X$.

The state at time t_k is $\varphi_k = \varphi(t_k) \in X$.

You apply an inverse scattering algorithm to reconstruct φ_k at t_k given data $f_k \in Y$.

Inverse scattering + further knowledge
Motivation II: Inversion and Dynamics ...

Inverse scattering +

further knowledge

- Describe the system by a **state** \(\varphi \in X \).
- The state at time \(t_k \) is \(\varphi_k = \varphi(t_k) \in X \).
- You apply an **inverse scattering** algorithm to reconstruct \(\varphi_k \) at \(t_k \) given data \(f_k \in Y \).
- The **system evolves** from \(\varphi_k \) to \(\varphi_{k+1}^{(b)} \).
Inverse scattering +

further knowledge

- Describe the system by a state \(\varphi \in X \).
- The state at time \(t_k \) is \(\varphi_k = \varphi(t_k) \in X \).
- You apply an inverse scattering algorithm to reconstruct \(\varphi_k \) at \(t_k \) given data \(f_k \in Y \).
- The system evolves from \(\varphi_k \) to \(\varphi_{k+1}^{(b)} \).
- You measure scattering data at \(t_{k+1} \) to reconstruct \(\varphi_{k+1} \) given
Motivation II: Inversion and Dynamics ...

Inverse scattering + further knowledge

- Describe the system by a state $\varphi \in X$.
- The state at time t_k is $\varphi_k = \varphi(t_k) \in X$.
- You apply an inverse scattering algorithm to reconstruct φ_k at t_k given data $f_k \in Y$.
- The system evolves from φ_k to $\varphi_{k+1}^{(b)}$.
- You measure scattering data at t_{k+1} to reconstruct φ_{k+1} given measurements f_{k+1} and...
Motivation II: Inversion and Dynamics ...

Inverse scattering +

further knowledge

- Describe the system by a state $\varphi \in X$.

- The state at time t_k is $\varphi_k = \varphi(t_k) \in X$.

- You apply an inverse scattering algorithm to reconstruct φ_k at t_k given data $f_k \in Y$.

- The system evolves from φ_k to φ_{k+1}.

- You measure scattering data at t_{k+1} to reconstruct φ_{k+1} given
 - measurements f_{k+1} and
 - the first guess $\varphi_{k+1}^{(b)}$.

Roland Potthast
NWP: Measurements for State Determination ...

- Synop,
- TEMP,
- Radiosondes,
- Buoys,
- Airplanes (AMDAR),
- Radar,
- Wind Profiler,
- Scatterometer,
- Radiances,
- GPS/GNSS,
- Ceilometer,
- Lidar
Setting for reconstruction problem

Partial Differential Equation (Acoustic, Electromagnetic, Elastic)

Boundary Condition on Object

Incident Wave

Remote Measurements
Electromagnetic scattering problem

- Bounded scatterer in three dimensions with boundary of class C^2, incident field E^i
- Scattered field E^s solves Maxwell equations

\[
\begin{align*}
\text{curl} E^s - i\kappa H^s &= 0 \\
\text{curl} H^s + i\kappa E^s &= 0
\end{align*}
\]

in $\mathbb{R}^3 \setminus \overline{D}$ and satisfies the Silver-Müller radiation condition

\[
E^s \times x + rH^s \to 0, \quad r = |x| \to \infty.
\]

- On the boundary $\Gamma := \partial D$ the tangential component of the total field $E = E^i + E^s$ vanishes, i.e. we have the perfect conductor boundary condition

\[

\nu \times E|_\Gamma = 0
\]
Measured data

Measured data are either the scattered field E^s on some surface Λ or the far field pattern E^∞ defined by

$$E^s(x) = \frac{e^{ik|x|}}{|x|} \left\{ E^\infty(\hat{x}) + O\left(\frac{1}{x}\right) \right\}, \quad \hat{x} := x/|x|$$

(4)

uniformly on \mathbb{S} for $|x| \to \infty$.

For the above scattering problem the far field pattern can be calculated via integral equations of the second kind.

$$E^s(\partial D) = \mathcal{H}(\partial D) \quad \text{or} \quad f(\varphi) = \mathcal{H}(\varphi)$$

(5)

when $\varphi := \partial D(t)$.
Mathematical Setup for Cycled Inversion

State Space:

- \mathcal{X}: state space, containing all state variables in one vector φ
- φ: state of the system
Mathematical Setup for Cycled Inversion

State Space:

- X: state space, containing all state variables in one vector φ
- φ: state of the system
- t_k: time discretization point
- φ_k: state at time t_k
Mathematical Setup for Cycled Inversion

State Space:

- **State space** \(X \), containing all state variables in one vector \(\varphi \)
- **State** \(\varphi \)
- **Time discretization point** \(t_k \)
- **State at time** \(t_k \) \(\varphi_k \)
- **Model operator at time** \(t_k \) \(M_k : X \rightarrow X \)

\[
\varphi_k \mapsto \varphi_{k+1} = M_k(\varphi_k)
\]
Mathematical Setup for Cycled Inversion

State Space:
- X \textit{state space}, containing all state variables in one vector φ
- φ state of the system
- t_k time discretization point
- φ_k state at time t_k
- $M_k : X \rightarrow X$ \textit{model operator} at time t_k, $\varphi_k \mapsto \varphi_{k+1} = M(\varphi_k)$

Observation Space
- Y_k \textit{observation space} at time t_k
- f_k observation vector at time t_k
- $H_k : X \rightarrow Y_k$ \textit{observation operator}
- x, y points in physical space
Data Assimilation or Cycled Inversion Task

Definition (Data Assimilation Task)

Given measurements \(f_k \) at \(t_k \) for \(k = 1, 2, 3, \ldots \) determine the states \(\varphi_k \) from the equations

\[
H \varphi_k = f_k, \quad k = 1, 2, 3, \ldots \tag{6}
\]

taking care of the *model dynamics* given by \(M_k \).
Motivation and Introduction

Cycled Inverse Problems

Data Assimilation or Cycled Inversion Task

Definition (Data Assimilation Task)

Given measurements f_k at t_k for $k = 1, 2, 3, \ldots$ determine the states φ_k from the equations

$$H\varphi_k = f_k, \quad k = 1, 2, 3, \ldots$$

(6)

taking care of the model dynamics given by M_k.

- Usually the measurement space is dynamic, i.e. changing in every time-step.
- In general H is a non-linear operator, non-injective, ill-posed.
- The value f_k contains significant data error with stochastic components and a dynamic bias.
Outline

1 Motivation and Introduction.

2 Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation

3 Convergence Analysis for Cycled Inversion 1: Range Arguments
 - Setup: Constant System
 - Convergence for Data $f \in R(H)$ / Divergence for $f \notin R(H)$

4 Convergence Analysis 2: Regularization of Cycled Inversion
 - Setup: High-Frequency Damping Systems
 - Analysis Error Bounds

5 Reading ↔ Rennes
In every assimilation step $k \in \mathbb{N}$ we solve the variational minimization problem to find the minimum of

$$J(\varphi) := \alpha \| \varphi - \varphi_{k+1}^{(b)} \|^2 + \| f_{k+1} - H\varphi_{k+1}^{(b)} \|^2, \quad \varphi \in X,$$

where

$$\varphi_{k+1}^{(b)} := M\varphi_k^{(a)}, \quad k = 0, 1, 2, \ldots$$

For linear operators the minimum is given by the *normal equations*, which can be reformulated into the update formula

$$\varphi_{k+1}^{(a)} = \varphi_{k+1}^{(b)} + R_\alpha \left(f_{k+1} - H\varphi_{k+1}^{(b)} \right)$$

with $R_\alpha = \left(\alpha I + H^*H \right)^{-1} H^*$, or in terms of the analysis fields $\varphi_k^{(a)}$

$$\varphi_{k+1}^{(a)} = M\varphi_k^{(a)} + R_\alpha \left(f_{k+1} - HM\varphi_k^{(a)} \right)$$

for $k = 0, 1, 2, \ldots$.
Start with $\phi(a)_0$ and for $k = 1, 2, 3, ...$
do:

Calculate first guess $\phi(b)_k = M_k - 1 \phi(a)_{k-1}$

Assimilate data f_k at time t_k calculating $\phi(a)_k$.
Start with $\varphi_0^{(a)}$ and for $k = 1, 2, 3, \ldots$ do:
1 Start with $\varphi_0^{(a)}$ and for $k = 1, 2, 3, \ldots$ do:

2 Calculate first guess

$$\varphi_k^{(b)} = M_{k-1} \varphi_{k-1}^{(a)}$$ (11)
1. Start with $\phi_0^{(a)}$ and for $k = 1, 2, 3, \ldots$ do:

2. Calculate **first guess**

 $$\phi_k^{(b)} = M_{k-1} \phi_{k-1}^{(a)}$$ \hspace{1cm} (11)

3. **Assimilate data** f_k at time t_k calculating $\phi_k^{(a)}$.

Roland Potthast
3dVAR - 2

Functional at time slice

\[J(\varphi) = \|\varphi - \varphi^{(b)}\|_B^{-2} + \|f - H\varphi\|_R^{-2} \] \hspace{1cm} (12)

Update Formula

\[\varphi_k^{(a)} = \varphi_k^{(b)} + (B^{-1} + H^* R^{-1} H)^{-1} H^* R^{-1} (f_k - H(\varphi_k^{(b)})) \]

\[= \varphi_k^{(b)} + BH^* (R + HBH^*)^{-1} \left(f_k - H(\varphi_k^{(b)}) \right). \] \hspace{1cm} (13)
Nonlinear Observation Operators

In the case of nonlinear observation operators \mathcal{H} we employ linearization

$$\mathcal{H}(\varphi^{(b)} + \delta \varphi) = \mathcal{H}(\varphi^{(b)}) + H\delta \varphi + O(||\delta \varphi||^2).$$

with H being the linearization of \mathcal{H} at $\varphi^{(b)}$. Then, we need to minimize

$$J(\delta \varphi) = ||\delta \varphi||^2 + ||(f - \mathcal{H}(\varphi^{(b)})) - H\delta \varphi||^2.$$

Nonlinear three-dimensional Variational Data Assimilation (3dVar)

The variational update formula of 3dVar is

$$\varphi^{(a)}_k = \varphi^{(b)}_k + (B^{-1} + H'R^{-1}H)^{-1}H'R^{-1}(f_k - \mathcal{H}(\varphi^{(b)}_k))$$

$$= \varphi_0 + BH'(R + HBH')^{-1}(f_k - \mathcal{H}\varphi^{(b)}_k).$$

(14)

$$\varphi^{(b)}_{k+1} = M_k \varphi^{(a)}_k, \ k = 1, 2, 3, \ldots$$

(15)
Outline

1 Motivation and Introduction.

2 Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation

3 Convergence Analysis for Cycled Inversion 1: Range Arguments
 - Setup: Constant System
 - Convergence for Data \(f \in R(H) / \) Divergence for \(f \notin R(H) \)

4 Convergence Analysis 2: Regularization of Cycled Inversion
 - Setup: High-Frequency Damping Systems
 - Analysis Error Bounds

5 Reading ↔ Rennes
Assume that $H : X \to Y$ is linear and compact. Then, there is a singular system \(\{ (\psi_n, g_n, \mu_n), \ n \in \mathbb{N} \} \) such that $H\psi_n = \mu_n g_n$, $H'g_n = \mu_n \psi_n$ and

$$H'H\psi_n = \mu_n^2 \psi_n,$$ \hspace{1cm} (16)
Assume that $H : X \rightarrow Y$ is linear and compact. Then, there is a **singular system**
\[
\{(\psi_n, g_n, \mu_n), \ n \in \mathbb{N}\}
\]
such that $H\psi_n = \mu_n g_n$, $H' g_n = \mu_n \psi_n$ and
\[
H' H\psi_n = \mu_n^2 \psi_n,
\]
(16)

This yields
\[
(\alpha I + H' H)\psi_n = (\alpha + \mu_n^2)\psi_n, \ n \in \mathbb{N}.
\]
(17)
Assume that $H : X \to Y$ is linear and compact. Then, there is a singular system
\[\{ (\psi_n, g_n, \mu_n), \ n \in \mathbb{N} \} \] such that $H\psi_n = \mu_n g_n$, $H' g_n = \mu_n \psi_n$ and
\[H' H \psi_n = \mu_n^2 \psi_n, \] (16)

This yields
\[(\alpha I + H' H) \psi_n = (\alpha + \mu_n^2) \psi_n, \quad n \in \mathbb{N}. \] (17)

With measurements
\[f = \sum_{n=1}^{\infty} f_n g_n \in Y \] (18)

and denote the spectral coefficients of the Tikhonov solution φ by γ_n. 3dVar or Tikhonov regularization, respectively, $(\alpha I + H' H) \varphi = H' f$ is equivalent to the spectral damping scheme
\[\gamma_n = \frac{\mu_n}{\alpha + \mu_n^2} f_n, \quad n \in \mathbb{N}. \] (19)
The true Inverse is

$$\gamma_n^{\text{true}} = \frac{1}{\mu_n} f_n^{\text{true}}.$$

(20)
The true Inverse is

$$\gamma_n^{true} = \frac{1}{\mu_n} f_n^{true}. \quad (20)$$

This inversion is unstable, if $\mu_n \to 0$, $n \to \infty$!
The true Inverse is

\[\gamma_n^{true} = \frac{1}{\mu_n} f_n^{true}. \]

(20)

This inversion is **unstable**, if \(\mu_n \to 0, \ n \to \infty \)!

Tikhonov regularization is **stable** for \(\alpha > 0 \)

\[\gamma_n = \frac{\mu_n}{\alpha + \mu_n^2} f_n, \quad n \in \mathbb{N}. \]

(21)

Tikhonov **shifts the eigenvalues** of \(H' H \) by \(\alpha \).
Outline

1 Motivation and Introduction.

2 Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation

3 Convergence Analysis for Cycled Inversion 1: Range Arguments
 - Setup: Constant System
 - Convergence for Data $f \in R(H)$ / Divergence for $f \notin R(H)$

4 Convergence Analysis 2: Regularization of Cycled Inversion
 - Setup: High-Frequency Damping Systems
 - Analysis Error Bounds

5 Reading ↔ Rennes
A system with constant dynamics

As a simple model system for study we use constant dynamics $M = \text{Identity}$, i.e

$$\varphi_{k+1}^{(b)} = \varphi_k^{(a)}, \quad k = 1, 2, 3, \ldots$$

(22)

for 3dVar. Also, we employ identical measurements $f_k \equiv f, \ k \in \mathbb{N}$.
A system with constant dynamics

As a simple model system for study we use \textbf{constant dynamics} \(M = \text{Identity} \), i.e.

\[
\varphi_{k+1}^{(b)} = \varphi_k^{(a)}, \quad k = 1, 2, 3, \ldots \tag{22}
\]

for 3dVar. Also, we employ \textbf{identical measurements} \(f_k \equiv f, \; k \in \mathbb{N} \).

Then, \textbf{3dVar} is given by the iteration

\[
\varphi_k = \varphi_{k-1} + (\alpha I + H' H)^{-1} H' (f - H \varphi_{k-1}), \quad k = 1, 2, 3, \ldots \tag{23}
\]

(This coincides with work of Engl on 'iterated Tikhonov regularization'!)
A system with constant dynamics

As a simple model system for study we use constant dynamics $M = \text{Identity}$, i.e

\[\varphi_{k+1}^{(b)} = \varphi_k^{(a)}, \quad k = 1, 2, 3, \ldots \]

(22)

for 3dVar. Also, we employ identical measurements $f_k \equiv f$, $k \in \mathbb{N}$.

Then, 3dVar is given by the iteration

\[\varphi_k = \varphi_{k-1} + (\alpha I + H'H)^{-1}H'(f - H\varphi_{k-1}), \quad k = 1, 2, 3, \ldots \]

(23)

(This coincides with work of Engl on 'iterated Tikhonov regularization'!)

For the spectral coefficients $\gamma_{n,k}$ of φ_k this leads to the iteration

\[\gamma_{n,k} = \gamma_{n,k-1} + \frac{\mu_n}{\alpha + \mu_n^2}(f_{n,k} - \mu_n \gamma_{n,k-1}) \]

(24)
Spectral Formula I

We employ

\[f = H \varphi^{(true)} + \delta, \quad f_{n,k} = \mu_n \gamma_n^{(true)} + \delta_n. \] \hspace{1cm} (25)

and obtain

\[\gamma_{n,k} = \gamma_{n,k-1} + \frac{\mu_n^2}{\alpha + \mu_n^2} (\gamma_n^{(true)} - \gamma_{n,k-1}) + \frac{\mu_n^2}{\alpha + \mu_n^2} \delta_n. \]

Theorem (Spectral Formula I)

The 3dVar cycling for a constant dynamics with identical measurements \(f = H \varphi^{(true)} + \delta \) lead to the spectral update formula

\[\gamma_{n,k} = (1 - q_n) \gamma_n^{(true)} + q_n \gamma_{n,k-1} + \frac{(1 - q_n)}{\mu_n} \delta_n \] \hspace{1cm} (26)

using

\[q_n = \frac{\alpha}{\alpha + \mu_n^2} = 1 - \frac{\mu_n^2}{\alpha + \mu_n^2}. \] \hspace{1cm} (27)
Theorem (Spectral Formula II)

The 3dVar cycling for a constant dynamics with identical measurements $f = H\varphi^{(true)} + \delta$ can be carried out explicitly. The development of its spectral coefficients is given by

$$
\gamma_{n,k} = (1 - q_n^k)\gamma_n^{(true)} + q_n^k\gamma_{n,0} + \frac{(1 - q_n^k)}{\mu_n}\delta_n
$$

(28)

using

$$
q_n = \frac{\alpha}{\alpha + \mu_n^2} = 1 - \frac{\mu_n^2}{\alpha + \mu_n^2}.
$$

(29)

Proof. Induction over k. □
Outline

1 Motivation and Introduction.

2 Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation

3 Convergence Analysis for Cycled Inversion 1: Range Arguments
 - Setup: Constant System
 - Convergence for Data \(f \in R(H) \) / Divergence for \(f \notin R(H) \)

4 Convergence Analysis 2: Regularization of Cycled Inversion
 - Setup: High-Frequency Damping Systems
 - Analysis Error Bounds

5 Reading \(\leftrightarrow \) Rennes
Convergence Analysis for Cycled Inversion 1: Range Arguments

Convergence for $f \in R(H)$

Theorem (Convergence for $f \in R(H)$)

Cycled 3dVar for a constant dynamics and identical measurements $f^{(true)} + \delta \in R(H)$ tends to the true solution $\varphi^{(true)} + \sigma$ with $H\sigma = \delta$ for $k \to \infty$.

Roland Potthast
Convergence for \(f \in R(H) \)

Theorem (Convergence for \(f \in R(H) \))

Cycled 3dVar for a constant dynamics and identical measurements \(f^{(true)} + \delta \in R(H) \) tends to the true solution \(\varphi^{(true)} + \sigma \) with \(H\sigma = \delta \) for \(k \to \infty \).

Proof. We study

\[
\gamma_{n,k} = (1 - q_n^k)\gamma^{(true)}_n + q_n^k \gamma_{n,0} + \frac{(1 - q_n^k)}{\mu_n} \delta_n
\]

(30)

for \(k \to \infty \).
Convergence Analysis for Cycled Inversion 1: Range Arguments

Convergence for Data $f \in R(H)$ / Divergence for $f \not\in R(H)$

Theorem (Convergence for $f \in R(H)$)

Cycled 3dVar for a constant dynamics and identical measurements $f^{(true)} + \delta \in R(H)$ *tends to the true solution* $\varphi^{(true)} + \sigma$ *with* $H\sigma = \delta$ *for* $k \to \infty$.

Proof. We study

\[
\gamma_{n,k} = (1 - q_n^k)\gamma_n^{(true)} + q_n^k\gamma_{n,0} + \frac{(1 - q_n^k)}{\mu_n}\delta_n
\]

(30)

for $k \to \infty$.

Since $0 < q_n < 1$, we have

\[
q_n^k \to 0, \ k \to \infty, \quad (1 - q_n^k) \to 1, \ k \to \infty.
\]

(31)

Since $\delta = H\sigma$ the element σ with spectral coefficients δ_n/μ_n is in X and cycled 3dVar converges towards $\varphi^{(true)} + \sigma$.

Roland Potthast
Divergence for \(f \not\in R(H) \)

Theorem (Divergence for \(f \not\in R(H) \))

For a constant dynamics and identical measurements \(f^{(\text{true})} + \delta \not\in R(H) \), cycled 3dVar diverges for \(k \to \infty \).
Divergence for $f \notin R(H)$

Theorem (Divergence for $f \notin R(H)$)

For a constant dynamics and identical measurements $f^{(\text{true})} + \delta \notin R(H)$ cycled 3dVar **diverges** for $k \to \infty$.

Proof. We study

$$\gamma_{n,k} = (1 - q_n^k)\gamma_n^{(\text{true})} + q_n^k\gamma_{n,0} + \frac{(1 - q_n^k)}{\mu_n}\delta_n$$

for $k \to \infty$. Let $\sigma_k \in X$ denote the element with spectral coefficients

$$\sigma_{n,k} = \frac{(1 - q_n^k)}{\mu_n}\delta_n, \quad k, n \in \mathbb{N}.$$

which is well defined since for every fixed $k \in \mathbb{N}$

$$\left| \frac{(1 - q_n^k)}{\mu_n} \right| = \left| \frac{(\alpha + \mu_n^2)^k - \alpha^k}{(\alpha + \mu_n^2)^k \mu_n} \right|$$

is bounded uniformly for $n \in \mathbb{N}$.

Roland Potthast 26/38
Since \(\delta \notin R(H) \) we know that

\[
S_L := \sum_{n=1}^{L} \left| \frac{\delta_n}{\mu_n} \right|^2 \rightarrow \infty, \quad L \rightarrow \infty.
\] (34)

Given \(C > 0 \) we can choose \(L \) such that \(S_L > 2C \). Then

\[
||\sigma_k||^2 \geq \sum_{n=1}^{L} \left| \frac{(1 - q_n^k)\delta_n}{\mu_n} \right|^2 > C
\] (35)

for \(k \in \mathbb{N} \) sufficiently large, which proves

\[
||\sigma_k|| \rightarrow \infty, \quad k \rightarrow \infty
\] (36)

and the proof is complete.

\[\square \]
Convergence Analysis for Cycled Inversion 1: Range Arguments

Convergence for Data \(f \in R(H) \) / Divergence for \(f \notin R(H) \)

Numerical Example: Dynamic Magnetic Tomography

![Graph showing convergence and divergence in time index k](image)

- **Error** values for different time indices
- **3dVar** line indicating convergence for data within the range of the operator \(R(H) \)
Outline

1 Motivation and Introduction.

2 Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation

3 Convergence Analysis for Cycled Inversion 1: Range Arguments
 - Setup: Constant System
 - Convergence for Data $f \in R(H)$ / Divergence for $f \notin R(H)$

4 Convergence Analysis 2: Regularization of Cycled Inversion
 - Setup: High-Frequency Damping Systems
 - Analysis Error Bounds

5 Reading ↔ Rennes
\[
\varphi^{(a)}_{k+1} - \varphi^{(\text{true})}_{k+1} = M(\varphi^{(a)}_k - \varphi^{(\text{true})}_k) + R_\alpha H M (\varphi^{(\text{true})}_k - \varphi^{(a)}_k) + R_\alpha f^{(\delta)}_{k+1}
\]

\[
= (I - R_\alpha H) M (\varphi^{(a)}_k - \varphi^{(\text{true})}_k) + R_\alpha f^{(\delta)}_{k+1}.
\] (37)

We abbreviate the analysis error by

\[
e_k := \varphi^{(a)}_k - \varphi^{(\text{true})}_k, \quad k = 1, 2, \ldots
\] (38)

and define

\[
\Lambda := (I - R_\alpha H) M
\] (39)

to obtain the iteration formula

\[
e_{k+1} = \Lambda e_k + R_\alpha f^{(\delta)}_{k+1}, \quad k = 0, 1, 2, \ldots
\] (40)
System Evolution

Theorem

Assume that the error $f^{(\delta)}_k$ does not depend on k, i.e. that we feed some constant error into the data assimilation scheme. Then, the error terms e_k with initial error e_0 described by the update formula (40) evolve according to

$$e_k = \Lambda^k e_0 + \left(\sum_{\ell=0}^{k-1} \Lambda^\ell \right) f^{(\delta)}$$ \hspace{1cm} (41)

with $f^{(\delta)} := R^{(\delta)}_\alpha$. If $(I - \Lambda)^{-1}$ exists, it can be written as

$$e_k = \Lambda^k e_0 + (I - \Lambda)^{-1} (I - \Lambda^k) f^{(\delta)}$$ \hspace{1cm} (42)

- The update formula has been already known in the 1970s.
- It was derived for a finite dimensional system with some well-posed observation operator in a stochastic framework for the Kalman filter.
Outline

1. Motivation and Introduction.

2. Cycled Inverse Scattering Problems
 - Cycled Tikhonov and 3dVar
 - Spectral Representation

3. Convergence Analysis for Cycled Inversion 1: Range Arguments
 - Setup: Constant System
 - Convergence for Data $f \in R(H)$ / Divergence for $f \notin R(H)$

4. Convergence Analysis 2: Regularization of Cycled Inversion
 - Setup: High-Frequency Damping Systems
 - Analysis Error Bounds

5. Reading ↔ Rennes
Space Decomposition

Let the orthonormal system \(\{\psi_\ell : \ell \in \mathbb{N}\} \) in \(X \) be given by the singular system of the observation operator \(H : X \to Y \). In this case we define an orthogonal decomposition of the space \(X \) by

\[
X_1^{(n)} := \text{span}\{\psi_1, \ldots, \psi_n\}, \quad X_2^{(n)} := \text{span}\{\psi_{n+1}, \psi_{n+2}, \ldots\}. \tag{43}
\]

Using the orthogonal projection operators \(P_1 \) of \(X \) onto \(X_1 \) and \(P_2 \) of \(X \) onto \(X_2 \), we decompose \(M \) into

\[
M_1 := P_1 M, \quad M_2 := P_2 M. \tag{44}
\]

Using \(N = (I - R_{\alpha}H) \) and \(\Lambda = NM \) we obtain

\[
\Lambda = N|_{X_1} M_1 + N|_{X_2} M_2. \tag{45}
\]
The operator N maps X_j, $j = 1, 2$, into itself. This leads to the norm estimate

$$
\| \Lambda \varphi \|^2 = \| (N|_{X_1} M_1 + N|_{X_2} M_2) \varphi \|^2
\]

$$

$$
= \| N|_{X_1} M_1 \varphi \|^2 + \| N|_{X_2} M_2 \varphi \|^2,
$$

leading to

$$
\| \Lambda \|^2 \leq \| N|_{X_1} \|^2 \| M_1 \|^2 + \| N|_{X_2} \|^2 \| M_2 \|^2.
$$

We derive estimates for all the above terms.
Norm Estimates 1

\[||\Lambda||^2 \leq ||N|_{X_1}||^2 ||M_1||^2 + ||N|_{X_2}||^2 ||M_2||^2. \] \hspace{1cm} (48)

Lemma

The norm of the operator \(N|_{X_2} \) is given by

\[||N|_{X_2}|| = 1 \] \hspace{1cm} (49)

for all \(n \in \mathbb{N} \) and \(\alpha > 0 \).

Lemma

Assume that \(M \) is self-adjoint with bounded Frobenius norm. Then, given \(\rho > 0 \) there is \(n \in \mathbb{N} \) such that for \(M_2 = M_2^{(n)} \) we have

\[||M_2|| < \rho. \] \hspace{1cm} (50)
Norm Estimates 2

\[\| \Lambda \|^2 \leq \| N_{X_1} \|^2 \| M_1 \|^2 + \| N_{X_2} \|^2 \| M_2 \|^2. \] \hspace{1cm} (51)

We need the freedom

\[\| M_1 \| = c. \] \hspace{1cm} (52)

Lemma

On \(X_1 \) for \(N = I - R_\alpha H \) we have the norm estimate

\[\| N_{X_1} \| = \sup_{\ell=1,..,n} \left| \frac{\alpha}{\alpha + \mu_n^2} \right| \] \hspace{1cm} (53)

where \(\mu_n \) are the singular values of the operator \(H \) ordered according to their size and multiplicity. In particular, given \(\epsilon > 0 \) and \(n \in \mathbb{N} \) we can choose \(\alpha > 0 \) sufficiently small such that

\[\| N_{X_1} \| < \epsilon. \] \hspace{1cm} (54)
Stabilization of data assimilation

Recall

\[e_k = \Lambda^k e_0 + (I - \Lambda)^{-1} (I - \Lambda^k) e(\delta) \] \hspace{1cm} (55)

Theorem

Assume that the system M is self-adjoint and its Frobenius norm is bounded and let \(\alpha \) denote the regularization parameter for a cycled data assimilation scheme. Then, for \(\alpha > 0 \) sufficiently small, we have \(\|\Lambda\| < 1 \). Assume that the observation error \(f(\delta) \) is bounded in norm by \(\delta > 0 \). In this case, the analysis error is bounded over time with

\[
\limsup_{k \to \infty} \| e_k \| \leq \frac{\| R_\alpha \| \delta}{1 - \|\Lambda\|} .
\] \hspace{1cm} (56)
Numerical Example

\(\alpha = 0.27 \)

\(\alpha = 0.26 \)
Summary on Cycled Inversion Instability I

- 3dVar (and 4dVar for linear systems) can be analysed as a **cycled Tikhonov regularization**.
- We have shown that even for very stable dynamics where $M = \text{const}$ cycled Tikhonov with ill-posed observation operators **diverges** if we have data $f \not\in R(H)$.
- The divergence carries over to 3dVar and 4dVar for simple systems.
Summary on Cycled Inversion Instability I

- 3dVar (and 4dVar for linear systems) can be analysed as a cycled Tikhonov regularization.
- We have shown that even for very stable dynamics where $M = \text{const}$ cycled Tikhonov with ill-posed observation operators diverges if we have data $f \notin R(H)$.
- The divergence carries over to 3dVar and 4dVar for simple systems.

Summary on Cycled Inversion Instability II

- For systems damping high frequencies we have shown that stability depends on the choice of the regularization parameter α.
- For self-adjoint systems M with bounded Frobenius norm we can always achieve a stable assimilation by choosing α appropriately, even if $\|M_2\| > 1$.
Rennes Research Group

1. Martin Costabel, Eric Darrigrand, Monique Dauge - Visiting Position 2007-2009 (3 years)
Rennes Research Group

1. Martin Costabel, Eric Darrigrand, Monique Dauge - Visiting Position 2007-2009 (3 years)

2. Fréchet differentiability by boundary integral equations, Inversion Studio Software
Rennes Research Group

1. Martin Costabel, Eric Darrigrand, Monique Dauge - Visiting Position 2007-2009 (3 years)

2. Fréchet differentiability by boundary integral equations, Inversion Studio Software

3. Martin’s PhD Student Frederique, El Hadji, ...
Rennes Research Group

1. Martin Costabel, Eric Darrigrand, Monique Dauge - Visiting Position 2007-2009 (3 years)

2. Fréchet differentiability by boundary integral equations, Inversion Studio Software

3. Martin’s PhD Student Frederique, El Hadji, ...

4. Further Rennes Visits and many conferences ...
Rennes Research Group

1. Martin Costabel, Eric Darrigrand, Monique Dauge - Visiting Position 2007-2009 (3 years)

2. Fréchet differentiability by boundary integral equations, Inversion Studio Software

3. Martin’s PhD Student Frederique, El Hadji, ...

4. Further Rennes Visits and many conferences ...

5. Being part of a well-developed maturing community, focus on mathematics ...