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Systems

Ω = Rn+1
+ . Same analysis works in unit ball and every domain

obtained by bilipschitz change of variables.
Points x = (t , x), t > 0, x ∈ Rn.
Measurable, bounded, with Mm×m(C)-valued coefficients
Ai,j , i , j = 0, . . .n, m ≥ 1.
Weak solution: u ∈W 1,2

loc (Ω; Cm) and Lu = 0 holds in D′(Ω; Cm):
with summation convention

Re
∫

Ω
Aα,βi,j ∂juβ ∂iϕα = 0, ∀ϕ ∈ C∞0 (Ω; Cm).

Short notation: Aα,βi,j ∂juβ ∂iϕα = A∇u · ∇ϕ and Lu = divA∇u in
Ω.
i = 0 corresponds to the vertical direction, i = 1, . . . ,n to the
horizontal directions.
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Energy space

E := Ḣ1(Ω; Cm) =: {u ∈ D′(Ω; Cm) : ‖∇u‖2 <∞}.
E/Cm Banach space.
C∞0 (Ω; Cm) dense in E and E ⊂ C([0,∞); L2

loc(Rn; Cm)).

Trace of E on Rn: T = Ḣ1/2(Rn; Cm). T contains C∞0 (Rn),
dense. T ⊂ L2

loc(Rn; Cm)). Dual Ḣ−1/2(Rn; Cm): space of
distributions.
E0 = {u ∈ E : Tr(u) ∈ Cm}. C∞0 (Ω; Cm) dense in E0.
When u ∈ E , Lu = 0 (energy solution) means∫

Ω A∇u · ∇ϕ = 0, ∀ϕ ∈ E0.
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Conormal derivative

If u ∈ E and Lu = 0, then there exists a unique distribution
g ∈ T ′ such that∫

Ω
A∇u · ∇ϕ = 〈g, ϕ0〉, ∀ϕ ∈ E .

Notation: g = ∂νAu|t=0 = ∂νAu0.

Green’s formula: If u,w ∈ E and Lu = 0 = L∗w , then

〈u0, ∂νA∗w0〉 = 〈∂νAu0,w0〉. (1)
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Rellich

Comparison between ‖∇tanu0‖ and ‖∂νAu0‖ for energy solutions
in some appropriate norm on the boundary.

Alternately, study of boundedness of the Dirichlet to Neumann
operator or of the Neumann to Dirichlet operator.
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Dirichlet problem

Ellipticity: Assume for some λ > 0,

Re
∫

Ω
A∇g · ∇g ≥ λ

∫
Ω
|∇g|2, ∀g ∈ E0. (2)

Let f ∈ T . Then, there is a unique energy solution u ∈ E of the
equation divA∇u = 0 with u|t=0 = f (equality also in
L2

loc(Rn; Cm), hence uniqueness). Moreover,

‖∇u‖2 ∼ ‖f‖T ∼ ‖∇tanf‖T ′ .

Hence, for any energy solution when A satisfies (2)

‖∂νAu0‖T ′ . ‖∇tanu0‖T ′

notation: u has smooth Dirichlet datum if u0 ∈ C∞0 .
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Neumann problem

Ellipticity: Assume for some λ > 0,

Re
∫

Ω
A∇g · ∇g ≥ λ

∫
Ω
|∇g|2, ∀g ∈ E . (3)

Let g ∈ T ′. Then, there is a energy solution u ∈ E , unique
modulo constants, of the equation divA∇u = 0 with
∂νAu|t=0 = g. Moreover,

‖∇u‖2 ∼ ‖g‖T ′ .

Hence, for any energy solution when A satisfies (3)

‖∇tanu0‖T ′ . ‖∂νAu0‖T ′

Notation: u has smooth Neumann datum if g = ∂νAu0 ∈ C∞0
with

∫
g = 0.
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BVP problems in Lp, 1 < p <∞

Typical problems in harmonic analysis (for example for the
Laplace equation).
• (Dir, A, p): Solve Lu = 0 with ‖Ñ(u)‖p <∞ and u0 = f given
in Lp(Rn; Cm).
• (Reg, A, p): Solve Lu = 0 with ‖Ñ(∇u)‖p <∞ and
∇tanu0 = ∇tanf , f given in Ẇ 1,p(Rn; Cm).
• (Neu, A, p): Solve Lu = 0 with ‖Ñ(∇u)‖p <∞ and
∂νAu|t=0 = g given in Lp(Rn; Cm).
Ñ(h) is non-tangential maximal interior control of h defined in
Ω: it comes up quite naturally.

Not always solvable nor well-posed. No comprehensive theory
at this time. To solve, Rellich inequalities are needed (not
enough).
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non-tangential maximal function

Whitney ball:

W (t , x) := [(1− c0)t , (1 + c0)t ]× B(x ; c1t),

for fixed c0 ∈ (0,1), c1 > 0.

Ñ(h)(x) := sup
t>0

t−(n+1)/2‖h‖L2(W (t ,x))
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Duality in Rellich estimates for the Dirichlet problem

Theorem

Let A(x) be a bounded measurable matrix with the Gårding
inequality (2). Let 1 < p <∞. The following are equivalent.

1 There exists Cp <∞ such that for any u ∈ E solution of
divA∇u = 0, ‖∂νAu0‖p ≤ Cp‖∇tanu0‖p.

2 There exists Cp′ <∞ such that for any w ∈ E solution of
divA∗∇w = 0, ‖∂νA∗w0‖Ẇ−1,p′ ≤ Cp′‖∇tanw0‖Ẇ−1,p′ .

Moreover, in any direction it suffices the assumption holds for
energy solutions with smooth Dirichlet data.

The tangential gradient and conormal derivative at the
boundary are distributions in Rn (in T ′). Thus, finiteness of any
of the norms above means that the distribution is identified with
an element in the considered space which is also embedded in
the space of distributions.
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Duality in Rellich estimates for the Neumann problem

Theorem

Let A(x) be a bounded measurable matrix with the stronger
Gårding inequality (3). Let 1 < p <∞. The following are
equivalent.

1 There exists Cp <∞ such that for any u ∈ E solution of
divA∇u = 0, ‖∇tanu0‖p ≤ Cp‖∂νAu0‖p.

2 There exists Cp′ <∞ such that for any w ∈ E solution of
divA∗∇w = 0, ‖∇tanw0‖Ẇ−1,p′ ≤ Cp′‖∂νA∗w0‖Ẇ−1,p′ .

Moreover, in any direction it suffices the assumption holds for
energy solutions with smooth Neumann data.
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Conclusion

There is a duality principle between Dirichlet problems in Lp

and Ẇ−1,p′ for L and L∗ and a similar duality principle for
Neumann problems in Lp and Ẇ−1,p′ for L and L∗.

No assumption on A but bounded + elliptic. Systems OK.

One can formulate similar results for n
n+1 < p ≤ 1 using Hardy

and Hardy-Sobolev spaces and their duals.

Problem: Rellich not enough. Need also identification of the
space of solutions corresponding to ‖∇tanu0‖X + ‖∂νAu0‖X .
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and Ẇ−1,p′ for L and L∗ and a similar duality principle for
Neumann problems in Lp and Ẇ−1,p′ for L and L∗.
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Application 1

Theorem
(Auscher-Axelsson) Assume A(x) = A(t , x) = A(x) is
independent of t, with the Garding inequality

Re
∫

Rn
A(x)f (x) · f (x) dx ≥ λ

∫
Rn
|f (x)|2dx , ∀ f ∈ H0, (4)

where f ∈ H0 means f = (f⊥, f‖) ∈ L2(Rn; Cm ⊗ (Cm)n) with
curltanf‖ = 0. Then, for any weak solution, when the LHS is
finite,

‖Ñ(∇u)‖2 ∼ ‖∇tanu0‖2 + ‖∂νAu0‖2.∫∫
Ω

t |∇u(t , x)|2 dtdx ∼ ‖∇tanu0‖2Ẇ−1,2 + ‖∂νAu0‖2Ẇ−1,2 .

Note: This holds also for A(t , x) satisfying (4) uniformly in t and a certain
Carleson type condition measuring t-regularity.
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Application 1: continued

Theorem
(Jerison-Kenig and Kenig-Pipher for real equations,
Auscher-Axelsson-McIntosh for systems) If A is t-independent
with (4) and A = A∗, then for any weak solution with
‖Ñ(∇u)‖2 <∞ or any energy solution

‖∇tanu0‖2 ∼ ‖∂νAu0‖2.

Furthermore, (Dir′, A, 2), (Reg, A, 2), (Neu, A, 2) are
well-posed.

Here, (Dir′, A, 2) is formulated as follows: Lu = 0, u0 = f given
in L2(Rn; Cm) with interior control

∫∫
Ω t |∇u(t , x)|2 dtdx <∞

instead of ‖Ñ(u)‖2 <∞.
This comparison follows from an integral identity in the spirit of
the identities discovered by Rellich for eigenvalue problems.
Self-adjointness is essential.
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Application 1: continued

Theorem
(Auscher-McIntosh-Mourgoglou) If A is t-independent with (4)
and A block lower-triangular (A0,j = 0 for j = 1, . . . ,n), then for
any weak solution with ‖Ñ(∇u)‖2 <∞ or any energy solution

‖∇tanu0‖2 . ‖∂νAu0‖2.

Furthermore, (Neu, A, 2) is well-posed.

Theorem
(Auscher-McIntosh-Mourgoglou) If A is t-independent with (4)
and A block upper-triangular (Ai,0 = 0 for i = 1, . . . ,n), then for
any weak solution with ‖Ñ(∇u)‖2 <∞ or any energy solution

‖∂νAu0‖2 . ‖∇tanu0‖2.

Furthermore, (Reg, A, 2) and (Dir’, A∗, 2) are well-posed.
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Application 2

Theorem
(Hofmann-Kenig-Mayboroda-Pipher, 2012 & 2013) If A is
t-independent, real with m = 1 (equation), then there is a
2 ≤ p0 <∞ such that (Dir, A, p) is well-posed and (Reg, A∗, p’)
is well-posed when p0 < p <∞.

To prove Dirichlet, they showed for any energy solution

‖∂νAu0‖Ẇ−1,p . ‖∇tanu0‖Ẇ−1,p . (5)

Their derivation of (Reg, A∗, p’) is quite technical. Here is a
simple (at least conceptually) way for existence: We have
(A.-Mourgoglou) for any energy solution of L∗u = 0 and
1 < p′ ≤ 2,

‖Ñ(∇u)‖p′ ∼ ‖∇tanu0‖p′ + ‖∂νA∗u0‖p′ .
Apply (5) and our duality result:

‖∂νA∗u0‖p′ . ‖∇tanu0‖p′ .
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There are more applications of these duality to positive
solvability results.

Results still incomplete, especially concerning methods to
obtain invertibility of the boundary maps or to prove Rellich
inequalities .

Thank you!
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